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Sample Codes

Quick demo – tensor ML is powerful!
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+ 0.4 ·⇥(x)

Let's machine learn the following function 
into a tensor network:

40 Gaussians, random location, width, & height 
+ a sharp step at 0.4



Today's Talk

Brief review of tensor networks

Why tensor networks for machine learning? 
Inspiration from DMRG.

Basis and amplitude encodings of data

Example applications

Future of tensor network machine learning



N-index tensor = shape with N lines

s1 s2 s3 s4 sN

T s1s2s3···sN =
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Low-order examples:

Tensors – Penrose Diagram Notation

vector matrix order-3 
tensor



Joining wires means contraction:
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Mijvj = wi

Tensors – Penrose Diagram Notation

=
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sj 2 0, 1

We are familiar with tensors from quantum many-body
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| i =
X

s1s2s3···sn

 s1s2s3···sn |s1s2s3 · · · sni

Amplitudes form a big tensor!

<latexit sha1_base64="k7Wi/DyPgn72YALZ+1oaJesGoIM="></latexit>s1
<latexit sha1_base64="K2B/lm0Esp3p5LHBnUHQpKzswmw="></latexit>

 s1s2s3s4s5s6 =
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Tensors



Any function of discrete variables can be represented as a 
tensor

All values of   insidef
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Tensors

f(s1, s2, s3, s4, s5, s6) =



Any function of discrete variables can be represented as a 
tensor

Tensors

= 1.2

=f(1, 2, 2, 2, 1, 2)

1 2 2 2 1 2



Tensors

= 0.3

=f(2, 2, 2, 2, 2, 1)

2 2 2 2 2 1

Any function of discrete variables can be represented as a 
tensor



Tensors

= − 0.2

=f(2, 1, 2, 2, 2, 2)

2 1 2 2 2 2

Any function of discrete variables can be represented as a 
tensor



Tensors

= 2.7

=f(2, 1, 1, 2, 2, 2)

2 1 1 2 2 2

Any function of discrete variables can be represented as a 
tensor



Later we will see technique to encode 
continuous variable functions too

Tensors

f(x) ≈ f(0.d1d2d3d4d5d6) =

d1 d2 d3 d4 d5 d6

f(x)



Why are tensors challenging?

Tensor Networks

2 parameters  (vector)

4 parameters  (matrix)

8 parameters (3-index tensor)

 parameters for -index tensor2n n

Tensor with 50 indices would have 
1,125,899,906,842,624 ~ 1015 parameters

⋯



Just as factorizing (SVD) a matrix reduces cost  
of memory and compute
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 is matrix rankχ

Tensor Networks

≈
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Tensor Networks

Can recursively factor (compress) a tensor as well
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Tensor Networks

Can recursively factor (compress) a tensor as well
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Tensor Networks

Can recursively factor (compress) a tensor as well
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Tensor Networks

Can recursively factor (compress) a tensor as well
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Tensor Networks

Can recursively factor (compress) a tensor as well



Advantage if internal indices small, yet accuracy is good 
(small "bond dimension" or "rank"  ) χ

Result is a matrix product state or tensor train
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Tensor Networks



Most algorithms require  computation, 
                                         memory

χ3

χ2

For large enough , MPS can represent  
any tensor

χ ( = 2N/2)

<latexit sha1_base64="/BZkSkmwKfbPGlrvFOFMWdO1P0M="></latexit>� <latexit sha1_base64="/BZkSkmwKfbPGlrvFOFMWdO1P0M="></latexit>� <latexit sha1_base64="/BZkSkmwKfbPGlrvFOFMWdO1P0M="></latexit>� <latexit sha1_base64="/BZkSkmwKfbPGlrvFOFMWdO1P0M="></latexit>� <latexit sha1_base64="/BZkSkmwKfbPGlrvFOFMWdO1P0M="></latexit>� <latexit sha1_base64="/BZkSkmwKfbPGlrvFOFMWdO1P0M="></latexit>�
≈

Tensor Networks



Can efficiently sum MPS in compressed form:

multiply by other networks:

+ =

=

and perfectly sample:
0

0

0

0

0

1

1

0

0

1

0

0

0

0

1

0

1

1

0

1

0

0

0

0



Tensor Networks

There are other tensor networks too, 
with their own algorithms and degrees of expressive power

MPS / TT

tree tensor network 
/ hierarchical Tucker

PEPS / tensor grid



Power of tensor networks is 
algorithms

Tensor Network Algorithms

Seminal tensor network algorithm is DMRG 
(density matrix renormalization group)

Finds ground state and its energy



DMRG algorithm 

Assume we can write  as a tensor networkH

Tensor Network Algorithms

H =



DMRG algorithm 

DMRG finds its ground state as an MPS tensor network

Tensor Network Algorithms

H =

|ψ0⟩ =

DMRG



Energy is

DMRG algorithm

Tensor Network Algorithms

E =
⟨ψ |

|ψ⟩



DMRG algorithm

Tensor Network Algorithms

E =
⟨ψ |

|ψ⟩

DMRG uses an "alternating" strategy to optimize 
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DMRG algorithm

Tensor Network Algorithms

E =
⟨ψ |

|ψ⟩

DMRG uses an "alternating" strategy to optimize 



DMRG algorithm

Tensor Network Algorithms

E =
⟨ψ |

|ψ⟩

At each step, solve a "mini" diagonalization problem



DMRG algorithm

Tensor Network Algorithms

At each step, solve a "mini" diagonalization problem*

*technical note: for efficiency, frozen tensors are contracted in three groups, not exactly as shown above



DMRG algorithm

Tensor Network Algorithms

At each step, solve a "mini" diagonalization problem*

= E

*technical note: for efficiency, frozen tensors are contracted in three groups, not exactly as shown above



DMRG algorithm

Tensor Network Algorithms

DMRG in action – solving Heisenberg chain

= ⟨Sz
j ⟩



DMRG algorithm

Tensor Network Algorithms

DMRG in action – solving Heisenberg chain

= ⟨Sz
j ⟩



DMRG algorithm is extremely powerful

Tensor Network Algorithms
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FIG. 3. Log-log plot of the relative error in the energy versus
CPU time in seconds for the 3S, pre-expansion and post-
expansion algorithms from Fig. [1]. Solid lines are the bond
expansion phase, as the bond dimension D is increased to 600.
Dashed lines are a further 11 sweeps with D = 600.

transitioning to dashed lines for the final part of the cal-
culation with fixed D.
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FIG. 4. Convergence of the Hubbard-Holstein model, en-
ergy versus number of half-sweeps. The random, range find-
ing, and RSVD algorithms all use � = 0.1 bond expansion.
Post-exp is post-expansion using RSVD with p = 10 oversam-
pling. The inset shows the detailed convergence over the last
two sweeps where the bond dimension is fixed at D = 600.
The black dashed line is an estimated variational bound for
D = 600. Post-expansion ads ⌘ = 0.1 expansion states after
the truncation phase, leading to an MPS with a final bond
dimension of D(1 + ⌘) = 660.

As a second benchmark, we examine the Hubbard-
Holstein model, using the same parameters as Fig. 3 of
Ref. [1], with maximum phonon occupancy of 3. Fo-
cusing on bond dimension D = 600, Fig. [4] shows the

relative energy error per sweep for a selection of di↵erent
local pre-expansion algorithms. Full SVD is a baseline
comparison using the full SVD of the expansion tensor
XĀ (note we did not project out the kept states of the
C tensor). Random vectors do not work so well in this
model, probably because of the large local Hilbert space
dimension of 12 states means that the k = 0.1D = 60 ex-
pansion states out of a possible 660 has a relatively low
probability of making a good selection. The range finding
algorithm works very well though. Note that for the ran-
dom and range finding algorithms, we force a minimum
of 1 state per quantum number sector into the expan-
sion basis. Without sampling all of the available sym-
metry sectors, the random and range finding algorithms
are ine↵ective. We also show three settings for oversam-
pling of the RSVD; the baseline p = 10 oversampling sug-
gested in Ref. [3], and multiplicative oversampling with
p = min(k + 10,k), for  = 1 and  = 3. Multiplicative
oversampling has a theoretical truncation error of a fac-
tor ' 1+ 1/ larger than the exact SVD[3], and  = 1 is
more than su�cient for this calculation. We also show 3S
and 2-site DMRG results for comparison. Aside from the
random and 3S curves, the remaining curves are basically
on top of each other. The inset shows the detail of the
convergence in the final sweeps. For pre-expansion algo-
rithms, the energy can drop below the variational bound
for D = 600 because of the larger Hilbert space during
the bond expansion, which leads to a shallow bound state
and a lower energy at that bond[15]. At the end of the
sweep, when all of the MPS bonds are dimension  600,
the energy is above the estimated variational bound. Be-
cause the RSVD post-expansion algorithm results in an
MPS with an enlarged bond dimension D(1 + ⌘), it is
allowed that the final energy is below the estimated vari-
ational bound and this actually occurs at the end of the
calculation.
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FIG. 5. CPU time (seconds) for the Hubbard-Holstein model.

For completeness, we show the CPU time for the
Hubbard-Holstein calculation in Fig. [5]. All of the pre-

McCulloch, Osborne, arxiv:2403.00562 (2024)



Can we harness the power of tensor networks  
for machine learning?

Tensor Network Machine Learning

Cat



Lightning review of machine learning concepts ⚡

Tensor Network Machine Learning



Machine Learning Concepts

Sometimes have large "data set" up front:



Can divide into training / validation / test

training
validation

test

Machine Learning Concepts



Sometimes given no data, but can call a function:

distance_from_goal(position) -> number

Image credit: Sofia Kolchanova, JetBrains

Machine Learning Concepts



Various "tasks" in machine learning:

• Supervised learning 
predict labels for data, classify data

Cat

💻

Dog

💻

Machine Learning Concepts



• Unsupervised learning / generative modeling 
recover distribution of data, or properties of 
that distribution (e.g."clusters")

Various "tasks" in machine learning:

💻

Machine Learning Concepts



• Active learning  
recover a function by querying at points

Various "tasks" in machine learning:

💻
f(x) f̃(x)

Machine Learning Concepts



In all cases, seek a model function with parameters

f ⃗θ( ⃗x)

data input ⃗x

model parameters ⃗θ

Optimize parameters  until function accomplishes task⃗θ

Machine Learning Concepts



For example, in supervised learning, model is 

fℓ
⃗θ
( ⃗x)

Optimize parameters  until  outputs maximum value 
when  is the correct label of input 

⃗θ f ℓ

ℓ ⃗x

 = labelℓ

Machine Learning Concepts



Three challenges for tensor networks: 

• representation of data 

• training algorithms 

• good problem selection

Tensor Network Machine Learning



Three challenges for tensor networks: 

• representation of data 

• training algorithms 

• good problem selection

Tensor Network Machine Learning



Representations of data

Tensor Network Machine Learning

View as vector of length N

Say we are given a piece of data with  componentsN

⃗x = [x1, x2, x3, …, xN]

⃗x = ⋯



Representations of data

Tensor Network Machine Learning

⃗x = [i1, i2, i3, …, iN]

If data entries are integers, nothing else to do

ij ∈ ℤ

Just use tensor network as model:

f( ⃗x) =
i1 i2 i3 i4 i5 i6

Test your knowledge: what are parameters  ?⃗θ



Representations of data

Tensor Network Machine Learning

Say we are given a piece of data with  componentsN

⃗x = [x1, x2, x3, …, xN]

What about continuous entries?    xj ∈ ℝ



Representations of data

Tensor Network Machine Learning

Two main encodings of continuous data into tensors

⃗x = [x1, x2, x3, …, xN]

⋯
s1 s2 s3 s4 s5 s6 sN

Basis encoding Amplitude encoding

b1 b2 b8b3 b4 b5 b6 b7

= xb



Representations of data

Tensor Network Machine Learning

Basis encoding

⋯
s1 s2 s3 s4 s5 s6 sN

For input input size , use  indices (high dimensional)N N

also known as "state encoding" or "product encoding"



Tensor Network Machine Learning

Amplitude encoding

≈

b1 b2 b8

For input size ,   indices (low dimensional)N log(N)

b3

Representations of data

b4 b5 b6 b7



Tensor Network Machine Learning

Basis encoding

Map each pixel  
to a vector

xj → [
cos( π

2 xj)

sin( π
2 xj)]

Take (formal) outer product

[
cos( π

2 x1)

sin( π
2 x1)] [

cos( π
2 x2)

sin( π
2 x2)] [

cos( π
2 x3)

sin( π
2 x3)]⋯⃗x →



Tensor Network Machine Learning

Another choice of "local feature map" is

xj → [1
xj] [ 1

x1] [ 1
x2] [ 1

x3]⋯

Basis encoding

⃗x →



Tensor Network Machine Learning

Can make into a function, or machine learning model, 
by contracting with a tensor

[ 1
x1]

  weight tensorW

[ 1
x2][ 1

x3][ 1
x4][ 1

x5][ 1
x6]

f(x1, x2, …, xN) =

← ⃗x



Tensor Network Machine Learning

A very high-order polynomial

[ 1
x1]

  weight tensorW

[ 1
x2][ 1

x3][ 1
x4][ 1

x5][ 1
x6]

f(x1, x2, …, xN) =

= W111111 + W211111x1 + W12111x2 + W112111x3…

+W221111x1x2 + W212111x1x3 + W12211x2x3 + …

+…

+W222222x1x2x3x4x5x6



Tensor Network Machine Learning

Test your understanding: what function is this?

[ 1
x1] [ 1

x2]

= ?

[1 0
0 1]   weight tensorW



Tensor Network Machine Learning

[ 1
x1]

  weight tensorW

[ 1
x2]

[1 0
0 1]

= 1 + x1x2

Test your understanding: what function is this?



Tensor Network Machine Learning

[ 1
x1]

  weight tensorW

[ 1
x2][ 1

x3][ 1
x4][ 1

x5][ 1
x6]

[0
1] [0

1] [0
1] [0

1] [0
1] [0

1]

= ?

Test your understanding: what function is this?



Tensor Network Machine Learning

[ 1
x1]

  weight tensorW

[ 1
x2][ 1

x3][ 1
x4][ 1

x5][ 1
x6]

[0
1] [0

1] [0
1] [0

1] [0
1] [0

1]

= x1x2x3x4x5x6

Test your understanding: what function is this?
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[ 1
x1]

  weight tensorW

[ 1
x2][ 1

x3][ 1
x4][ 1

x5][ 1
x6]

[1
1] [1

1] [1
1] [1

1] [1
1] [1

1]

= ?

Test your understanding: what function is this?
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[ 1
x1]

  weight tensorW

[ 1
x2][ 1

x3][ 1
x4][ 1

x5][ 1
x6]

= (1 + x1)(1 + x2)(1 + x3)(1 + x4)(1 + x5)(1 + x6)

[1
1] [1

1] [1
1] [1

1] [1
1] [1

1]

Test your understanding: what function is this?
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Exponentially many weights in general

[ 1
x1]

  weight tensorW

[ 1
x2][ 1

x3][ 1
x4][ 1

x5][ 1
x6]

f(x1, x2, …, xN) =
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Use tensor network to make efficient

[ 1
x1]

  weight MPSW

[ 1
x2][ 1

x3][ 1
x4][ 1

x5][ 1
x6]

f(x1, x2, …, xN) =

Higher bond dimension     =   more representation powerχ



Tensor Network Machine Learning

For supervised learning,

[ 1
x1]

  weight MPSW

[ 1
x2][ 1

x3][ 1
x4][ 1

x5][ 1
x6]

f(x1, x2, …, xN) =

put extra label index
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Train using alternating gradient descent

[ 1
x1][ 1

x2][ 1
x3][ 1

x4][ 1
x5][ 1

x6]
f(x1, x2, …, xN) =

Could use favorite neural network or auto-
differentiation framework (JAX, PyTorch, etc.)
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Train using alternating gradient descent

[ 1
x1][ 1

x2][ 1
x3][ 1

x4][ 1
x5][ 1

x6]
f(x1, x2, …, xN) =

Minimize cost function such as squared error

C =
1

NT

NT

∑
j=1

(f( ⃗xj) − yj)2
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Example: Supervised learning of MNIST handwriting

Train to 99.95% accuracy on 60,000 training images

Obtain 99.03% accuracy on 10,000 test images         
(only 97 incorrect) Stoudenmire, Schwab, arxiv:1605.05775
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Example: Supervised learning of MNIST handwriting

Bond dimension      Test Set Error

~5%     (500/10,000 incorrect)

~2%      (200/10,000 incorrect)

 0.97%   (97/10,000 incorrect)m = 120                 

m = 20                 

m = 10                 

Stoudenmire, Schwab, arxiv:1605.05775
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Amplitude encoding

In this representation, indices do not correspond to different 
features. 

Let's see how this works...

Instead, indices "collectively" access each feature.
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Say we have data vector ⃗x

⃗x = [x0, x1, x2, . . . , xN−1] (zero indexed)

Define tensor such that

0 0 0 0 0 0 0 0

= x0

Amplitude encoding
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Say we have data vector ⃗x

⃗x = [x0, x1, x2, . . . , xN−1] (zero indexed)

Define tensor such that

0 0 0 0 0 0 0 1

= x1

Amplitude encoding
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Say we have data vector ⃗x

⃗x = [x0, x1, x2, . . . , xN−1] (zero indexed)

Define tensor such that

0 0 0 0 0 0 1 0

= x2

Amplitude encoding
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Say we have data vector ⃗x

⃗x = [x0, x1, x2, . . . , xN−1] (zero indexed)

Define tensor such that

0 0 0 0 0 0 1 1

= x3

Amplitude encoding
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Say we have data vector ⃗x

⃗x = [x0, x1, x2, . . . , xN−1] (zero indexed)

Define tensor such that

0 0 0 0 0 1 0 0

= x4

Amplitude encoding
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Say we have data vector ⃗x

⃗x = [x0, x1, x2, . . . , xN−1] (zero indexed)

Define tensor such that

0 0 0 0 0 1 0 1

= x5

Amplitude encoding
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Say we have data vector ⃗x

⃗x = [x0, x1, x2, . . . , xN−1] (zero indexed)

Define tensor such that

1 1 1 1 1 1 1 1

= xN−1

Amplitude encoding
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Viewed as a quantum state, it is just

⃗x = [x0, x1, x2, . . . , xN−1] (zero indexed)

Amplitude encoding
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To make efficient, again factorize as MPS

Amplitude encoding

⃗x → ≈
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To make into a model, contract with weight MPS

Amplitude encoding

← ⃗x
f( ⃗x) =



Tensor Network Machine Learning

Since indices enumerate entries of  one-by-one, 
it is just a 'linear classifier' in tensor form

⃗x

Amplitude encoding

← ⃗x
f( ⃗x) =

f( ⃗x) = w1x1 + w2x2 + … + wnxn

Not very powerful...
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Amplitude encoding

f( ⃗x) =

Make more powerful by repeating ("stacking") data input

⃗x
↑

⃗x
↑

Now model contains linear + quadratic terms

f( ⃗x) = a + w1x1 + … + w11(x1)2 + w12x1x2 + …



Tensor Network Machine Learning

Application: Supervised learning of "Fashion-MNIST"

DILIP, LIU, SMITH, AND POLLMANN PHYSICAL REVIEW RESEARCH 4, 043007 (2022)

is not limited by the entanglement of the quantum state in the
same way as MPS. We demonstrate that a hardware-efficient
quantum circuit classifier can achieve competitive accuracy
on the Fashion-MNIST dataset using only 11 qubits. These
two efforts together provide a scalable method to tune classi-
fication accuracy on quantum devices according to available
hardware.

II. IMAGE CLASSIFICATION USING
MATRIX-PRODUCT STATES

In this section, we describe the MPS approach for ma-
chine learning, including the data-encoding scheme and the
classifier. We focus on the task of image classification on
the Fashion-MNIST dataset, which contains 60 000 training
images and 10 000 test images from ten label classes. In our
experiments, we resize the default Fashion-MNIST images
using a bilinear interpolation from 28×28 to 32×32 to facili-
tate the patching procedure that we introduce in the following
section.

A. Data encoding

A standard way to encode classical images in a quantum
system is the so-called flexible representation of quantum
images (FRQI) [13,26], in which N pixels are encoded using
log2 N + 1 qubits. Each N-pixel grayscale image is viewed
as a flattened N-dimensional vector (p0, . . . , pN−1) with pixel
values pi ∈ [0, 1]. This vector is then encoded to the following
quantum state:

|ψ⟩ = 1√
N

N−1∑

x=0

|x⟩
(

cos
π px

2
|0⟩ + sin

π px

2
|1⟩

)
. (1)

The first log2 N qubits, which we refer to as address qubits,
label the pixel locations, i.e., the computational basis states
|x⟩ correspond to binary representations of the location in
the N-dimensional array; see Fig. 1(a) for a schematic. The
remaining qubit, which we refer to as the color qubit, encodes
the pixel value or brightness. This encoding is similar to
amplitude encoding [10,14,27], but the use of the color qubit
allows for an absolute intensity scale for the image which is
lost due to normalization of the state in amplitude encoding.
Several quantum image processing algorithms that exhibit
quantum speed-ups also rely on FRQI [28,29]. By convention,
we enumerate the pixels following a snake pattern as depicted
in Fig. 1(a). The FRQI uses quantum entanglement between
the address and color qubits. For a generic image, this will re-
quire a circuit depth polynomial in N [13,25]. Although FRQI
uses only log2 N + 1 qubits to encode an N-pixel image, the
hardware requirements shift from the qubits to the gates. To
address the circuit depth, we instead use an approximate com-
pressed representation based on matrix-product states (see
Appendix A for a brief review on MPS). The bond dimension,
χ , of the MPS limits the quantum entanglement and thus
controls the accuracy of the approximation, as illustrated in
Fig. 1(c). Importantly, there exists a direct mapping between
MPS and sequential quantum circuits [21–25], as outlined in
Appendix A. The circuit depth scales linearly in the number
of qubits and polynomially with χ . The FRQI can thus be
coupled with the MPS approximation to reduce the circuit

FIG. 1. (a) Our encoding scheme consists of splitting the image
into patches, each of which is encoded in a quantum superposi-
tion state consisting of address qubits and a color qubit, as defined
in Eq. (1). (b) In the MPS learning protocol, each patch is sep-
arately encoded into an MPS consisting of tensors with physical
dimension 2 corresponding to address (circle) qubits and the color
(square) qubit. These MPS are concatenated and contracted with
an MPS-based classifier (purple) with fixed bond dimension. An
additional dimension 10 classifer leg, represented by three lines, is
used to classify the Fashion-MNIST images. (c) An example encoded
Fashion-MNIST image with bond dimension χimg = 4 for different
numbers of patches, compared with the original uncompressed im-
age. (d) The compressed image as a single single patch with varying
bond dimension χimg = 1, 2, 4, 8.

depth to O(poly(χ ) log2 N ). To control the number of qubits,
we can divide our image into patches and encode each patch
independently using the FRQI (see Fig. 1). If we split the
image into Np patches, then the encoding scheme requires
(⌈log2 N/Np⌉ + 1)Np qubits. Taking Np = N means each pixel
is encoded in a single qubit, as considered in Refs. [15,30].
The encoded image is a product state of N qubits in the states
|ψx⟩ = cos π px

2 |0⟩ + sin π px
2 |1⟩. We refer to this as the single-

pixel limit. This patching procedure allows us to interpolate
between the FRQI limit and the single-pixel limit.

B. The MPS classifier

To classify the different images, we train an MPS classifier
[15,16] with dimension 2 physical legs and a single additional
dimension L “label” leg, where L is the number of labels
(L = 10 for Fashion-MNIST). We contract each image MPS
with the classifier MPS; the element with largest amplitude
in the resulting length L vector is the predicted label. This
contraction method is shown in Fig. 1(b). In our experiments
we use the Adam optimizer [31] with learning rate 10−4 and
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Use patches of  
amplitude and basis 
encoded data

Obtain 90% test 
accuracy (!) using χ = 10
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FIG. 2. (a) The test accuracy for classification using MPS as a
function of the image bond dimensions χimg for fixed classifier bond
dimension χclass = 10. Each curve corresponds to a different number
of patches; see Fig. 1. We report the average of the best 100 test
accuracies to limit stochastic effects. The numbers in parentheses in
the legend are the required number of qubits on a quantum computer.
The dashed red line shows the single pixel limit, which is an exact
encoding of the image with χimg = 1. (b) The test accuracy as a
function of the classifier bond dimension χclass, for fixed image bond
dimension χimg = 4.

batch size 128—see Appendix B. In Fig. 2(a) we show the test
accuracy obtained when using our MPS data compression for
various numbers of patches and bond dimensions χimg, where
we fixed the classifier bond dimension χclass = 10. We achieve
performance comparable with state-of-the-art tensor network
methods, but at a fraction of the hardware requirements. In
particular, Ref. [16] achieved test accuracy of approximately
88% on the Fashion-MNIST dataset by assigning a single
qubit to each pixel, which would cost 784 qubits using the
original 28×28 images. As shown in Fig. 2, we can achieve
similar accuracy with relatively shallow circuits (i.e., bond
dimension 2–3) and only 64 qubits, corresponding to the 2×4
patch case. Additionally, we find that increasing both the bond
dimensions χimg (number of gates) and the number of patches
(number of qubits) improves the test accuracy. Notably, the
accuracy as a function of the image bond dimension plateaus
at a different point for each number of patches. This suggests
that the number of patches (and number of qubits) is important
for improving the accuracy. Since our method allows us to
tune both parameters, it allows us to find an optimal compres-
sion of the image that respects the limitation of the device.
Figure 2(b) shows the dependence of the test accuracy on

the classifier bond dimension χclass, for a fixed χimg. We find
that beyond χclass = 10 increasing the bond dimension has a
relatively small impact on the classification accuracy for most
choices of patching. We similarly observe that increasing the
number of patches increases the accuracy in all cases.

III. CLASSIFICATION USING QUANTUM CIRCUITS

In this section, we describe an approach to quantum
machine learning based on parameterized quantum circuits
[32–34]. We use sequential circuits to both encode the classi-
cal data and to implement the classifier. The sequential circuit
structure is inspired by the preceding MPS approach but is
specifically tailored for the local and pairwise connectivity of
many quantum computer realizations, and so we refer to them
as hardware-efficient.

A. Quantum data encoding

When mapping the MPS-based approach of the previous
section to a quantum circuit, we are left with a circuit depth
that scales polynomially with χ . This is because the mapping
entails a sequence of multiqubit gates where each gate acts
on ⌈log2 χ⌉ + 1 qubits, which must subsequently be decom-
posed into the two-qubit gates and rotations implemented on
physical devices (see Appendix A). We propose an alternative
circuit structure for encoding the classical data as a quantum
state, which consists of Mimg layers of sequentially arranged
two-qubit gates, as shown in Fig. 3(a). These gates are pa-
rameterized and optimized such that the resulting state has
maximal fidelity with the exact encoding of the state. Note
that since the pixel values are implicitly contained in the
probabilities for measuring each of the computational basis
states, the optimization can in principle be performed without
computing overlaps of states on the quantum computer. We
open-source these processed circuits at Ref. [35].

In Fig. 3(b), we display a sample scaled 32×32 image
compressed using the sequential ansatz for Mimg = 1, 2, and
3, using the FRQI encoding on 11 qubits. We can addition-
ally include the patching procedure to control the number
of qubits used. However, due to the computational cost of
simulating the quantum circuits, we restrict ourselves to a
single patch Np = 1. We use the Adam optimizer to obtain
the optimal circuit compression. The sequential circuit struc-
ture that we use is a subclass of MPS with bond dimension
χ = 2Mimg [21–25], as explained in Appendix A. To generate
entanglement entropy S ∼ log χ requires exponentially fewer
parameters in our quantum circuit. Conversely, for the same
number of parameters, our quantum circuits generate more
entanglement.

B. Quantum circuit classifier

To classify the encoded images, we similarly use a
hardware-efficient sequential circuit with Mclass layers, as
shown in Fig. 3(a). It is possible to directly implement the
MPS classifier in Sec. II B as a quantum circuit but with
two undesirable features. The first is that, similarly to the
state, the circuit will consist of multiqubit gates set by the
bond dimension. The second is that this approach requires
projections for some of the qubits. The result is that the
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Application: Quantum Circuit Learning Models
Wright, Barratt, Green, et al., arxiv 2205.09768 (2022) 5
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FIG. 3. Circuit Representation of MPS-encoded im-
ages. MPS in orthogonal form can be translated directly to
quantum circuits. a) shows the translation of the full quantum
state | i and is equivalent to Fig. 1b. b) shows a truncation
to bond order Dmax = 4 and how reference qubits are used to
label the classes.

|pi |bli (which is exponentially costly) or else a swap test
between Ul |imagei and |pi |bli.

For implementation on a quantum computer it is
preferable to simply measure the Pauli Z operator on
the label qubits and use the resulting output to assign a
label. This corresponds to the assignment

k = max
l

X

p

| himage| Ul |pi |bli |
2, (2)

where a sum or trace over all paddings is taken. Tracing
over paddings is potentially exponentially quicker than
post-selecting paddings on a quantum device, but we find
that it performs worse than the post-selection of Eq. (1).

Comments on the sum state classifier: In principle, one
need not construct the sum state |⌃li in order to com-
pute its overlap with a given test image. The sum of the
overlaps with each test image gives the same result. An
explicit construction of the sum state reduces the num-
ber of overlaps with the test data from O(NtrainNtest)
to O(Ntest). In addition, the explicit sum state has the
advantage of ease of implementation on a quantum com-
puter.

Recently, Vidal et al showed that the sum state is
not optimal for classification of product state encoded
data[49]. It is not evident that this result applies to an
amplitude encoding, where classical correlations of indi-

FIG. 4. Batching of MPS-encoded images: For large
training sets it may not be possible to construct the full
sum state before re-arranging it as an MPS. In this case, we
proceed by first finding the sum state over smaller batches
and progressively combining and compressing these batches.
When the maximum bond order of each batch is large enough
(Dbatch � Dmax = 32 in the case of MNIST) the represen-
tation of the sum state is exact and this procedure gives the
same result as forming the sum-state MPS in a single step.
When Dbatch < Dmax, the final result gives a compressed ap-
proximation to the sum state. This process yields a slightly
different state for different batchings of the images. Here we
show a training set consisting of 1000 images progressively
combined in batches of 10.

vidual images have been encoded in the entanglement
structure. A sum state constructed from product state
encodings has different entanglement structure than any
individual state. In contrast, a sum state constructed
from amplitude encodings has a similar entanglement
structure.

So far we have constructed different sum states |⌃li

for each class l, corresponding to the action of different
unitaries Ul on the reference states |pi |bli. Next, we
combine these into a single unitary that allows direct
multi-state classification on a single quantum circuit.

3. Orthogonalising Sum States

The MPS |⌃li and the MPOs, Ul, that generate them
can be orthogonalised and combined to form a single ma-
trix product operator U . The construction follows much
the same steps as described in Sec II B 1, with the tensors
A, B and C now corresponding to the MPS representa-
tion of sum states for different classes. The treatment of
the central tensor is different since these carry the label
index, �. The combined tensor for the central site then
becomes

A
�
C =

0

B@
A�

C
0 0

0 B�
C

0

0 0 C�
C

1

CA

0

@
v�A 0 0
0 v�B 0
0 0 v�C

1

A ,

where as before auxiliary-space tensor indices have been
suppressed for clarity. The reference state vectors v�A,
v�B and v�C are taken to be orthogonal bitstrings for each
class. The central tensor then has non-zero elements in
different parts of the reference space for different classes.

Using amplitude encoded data, 
propose circuits equaling MPS

Use "stacking" (inputting data multiple times) 
to get higher-order functions

Deterministic (no gradient, linear algebra) learning



Let's do some brief  
"theory of tensor network machine learning"...

Tensor Network Machine Learning



b(3)
1 b(3)

2 b(3)
n

Mixing high-dimensional and low-dimensional encoding 
gives "universal approximation theorem" for 
tensor networks

Tensor Network Machine Learning

f(x1, x2, x3, . . . , xN) =

b(1)
1 b(1)

2 b(1)
n b(2)

1 b(2)
2 b(2)

n⋯ ⋯ ⋯ ⋯

bits of x1 bits of x2 bits of x3 ⋯

Tensor entries arbitrary, so can store any function on 
exponentially fine continuum grid



b(3)
1 b(3)

2 b(3)
n

Mixing high-dimensional and low-dimensional encoding 
gives "universal approximation theorem" for 
tensor networks

Tensor Network Machine Learning

f(x1, x2, x3, . . . , xN) ≈

b(1)
1 b(1)

2 b(1)
n b(2)

1 b(2)
2 b(2)

n⋯ ⋯ ⋯ ⋯

And any tensor is representable by MPS with 
large enough bond dimension χ

No explicit non-linearities, and yet true



Tensor network learning is a form of kernel learning

Tensor Network Machine Learning

Does not use "kernel trick" which scales quadratically 

Yet training scales linearly with data set size

[ 1
x1][ 1

x2][ 1
x3][ 1

x4][ 1
x5][ 1

x6] ϕ( ⃗x)

Wf( ⃗x) =

= W ⋅ ϕ( ⃗x)



The Future of Tensor Network 
Machine Learning



Future Direction #1: 
Continuum Functions



Future Directions – Continuum Functions

Continuum amplitude encoding

Especially useful for continuous inputs to tensors

For a function , evaluate on fine grid of spacing f 1/2n

10

⃗f = [ f(0.0000), f(0.0001), f(0.0010), …, f(0.1111)]



Continuum amplitude encoding ("quantics tensor train")

Especially useful for continuous inputs to tensors

One powerful technique is 

x y

Future Directions – Continuum Functions



For a function , evaluate on fine grid of spacing f 1/2n

⃗f = [ f(0.0000), f(0.0001), f(0.0010), …, f(0.1111)]

10

Continuum amplitude encoding

Future Directions – Continuum Functions



For a function , evaluate on fine grid of spacing f 1/2n

⃗f = [ f(0.0000), f(0.0001), f(0.0010), …, f(0.1111)]

Define tensor such that

= f(0.b1b2b3⋯bn)
b1 b2 bnb3 ⋯

Continuum amplitude encoding

Future Directions – Continuum Functions



Tensor Network Machine Learning

For a function , evaluate on fine grid of spacing f 1/2n

⃗f = [ f(0.0000), f(0.0001), f(0.0010), …, f(0.1111)]

Define tensor such that

= f(0.000000)
0 0 0 0 0 0 0 00 .

Continuum amplitude encoding



Tensor Network Machine Learning

⃗f = [ f(0.0000), f(0.0001), f(0.0010), …, f(0.1111)]

Define tensor such that

= f(0.100000)
1 0 0 0 0 0 0 00 .

For a function , evaluate on fine grid of spacing f 1/2n

Continuum amplitude encoding



Tensor Network Machine Learning

⃗f = [ f(0.0000), f(0.0001), f(0.0010), …, f(0.1111)]

Define tensor such that

= f(0.110000)
1 1 0 0 0 0 0 00 .

For a function , evaluate on fine grid of spacing f 1/2n

Continuum amplitude encoding



Tensor Network Machine Learning

⃗f = [ f(0.0000), f(0.0001), f(0.0010), …, f(0.1111)]

Define tensor such that

= f(0.110001)
1 1 0 0 0 0 0 10 .

For a function , evaluate on fine grid of spacing f 1/2n

Continuum amplitude encoding



It is a hierarchical representation of data

b1

b2

b3

b4

0 1
0 1 0 1

11110 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Continuum amplitude encoding

Future Directions – Continuum Functions



Tensor Network Machine Learning

It is a hierarchical representation of data

0
1
1
1

0 1
0 1 0 1

11110 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Continuum amplitude encoding



Tensor Network Machine Learning

It is a hierarchical representation of data

0
1
0
0

0 1
0 1 0 1

11110 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Continuum amplitude encoding



Tensor Network Machine Learning

It is a hierarchical representation of data

1
0
0
0

0 1
0 1 0 1

11110 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Continuum amplitude encoding



Tensor Network Machine Learning

It is a hierarchical representation of data

1
0
0
1

0 1
0 1 0 1

11110 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Continuum amplitude encoding



Key question: for a given  

is  low-rank as a tensor network?

f(x)

F

F
≈
?

Future Directions – Continuum Functions



Tensor network low rank for: 

• all smooth enough functions [1,2] 

• functions with finite number of cusps  
or discontinuities [1,2] 

• any Fourier transform of these [3]

Low rank for many cases

F
≈

[1] Mazen Ali, Anthony Nouy, Constr Approx 
[2] Mazen Ali, Anthony Nouy, arxiv:2101.11932 

[3] Chen, EMS, White, PRX Quantum, arxiv:2210.08468
Future Directions – Continuum Functions



Examples:

<latexit sha1_base64="EWwlsnVMM2ROiIMNuv3tWbxnHxs="></latexit>

cos
⇥
x� 1

2

⇤

χ = 2

χ = 18

χ = 9

sum of 20 
cosines

cosine 
+ cusps

Future Directions – Continuum Functions



Works in 1D, 2D, ...
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FIG. 2. Green’s function G(k) of the Haldane model, com-
puted with error tolerance ✏ = 10�5 throughout. (a,b) QTCI
of the |G| and its relative error, |GQTCI � G|/|G|, for � = 512,
R = 10. (c,d) Comparison of QTT unfoldings via SVD and
TCI, showing (c) the relative error vs. the maximum bond
dimension for R = 10 and � = 16, 64, 512; and (d) runtimes vs.
R for � = 512. (e,f) QTCI bond dimensions for R = 10, 20, 30,
showing (e) D` vs. ` for � = 512; and (f) Dmax vs. �.

the relative error w.r.t. the exact value is below 10�5

throughout, hence the momentum dependence is cap-
tured accurately. There are small Fermi surfaces around
k = (� 4

3⇡, 0) and symmetry-related k. To construct
QTTs, we define f� = G(k, i⇡/�), where � encodes k
and � is fixed. Figure 2(c) shows the relative in-sample
error as a function of Dmax for TTs constructed with
R = 10 for � = 16, 64, 512, using either SVD or TCI. For
both, the error decreases exponentially as Dmax increases.
Moreover, TCI is nearly optimal, achieving the same error
as SVD for a Dmax that is only a few percent larger.

Figure 2(d) shows how SVD and TCI runtimes depend
on the number of bits, R, for a fixed Dmax at large � = 512,
where the features in G are sharp. The times, including
function evaluations, were measured on a single CPU
core of AMD EPYC 7702P. The SVD runtimes become
prohibitively large for R > 10 due to exponential scaling;
by contrast, the TCI runtimes depend only mildly on R.

Figure 2(e) shows how TCI profiles of D` vs. ` depend
on R, for � = 512 and a specified error tolerance ✏ = 10�5.
The bond dimension initially grows as D` ⇠ 2`, reaches
a maximum near ` ⇡ 20, then decreases back to 1. The
curves for R=20 and 30 almost coincide, indicating that a
good resolution of the sharp features at � = 512 requires
R > 20—well beyond the reach of SVD unfoldings.

The low computational cost of TCI allows us to in-
vestigate the � dependence of Dmax up to � = 1024.
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FIG. 3. Evaluation of the Chern number in the Haldane model
using QTCI for the Berry flux F (k), with error tolerance
✏ = 10�10 throughout. (a) QTCI of F (k) on the integration
domain (circles mark peak positions); (b) cuts through F (k)
along the colored lines shown in (a) and (c) errors for F (k) and
C as functions of Dmax, all computed for �m =�10�5, R=20.
(d) Bond dimension D` for QTTs of length R = 10, 12, 14, 20.
(e) Chern number C as a function of �m, for four coices of R.

Figure 2(f) suggests Dmax / �
↵ with ↵ ⇡ 1/2 for large �.

Remarkably, this growth is slower than that, Dmax / �,
conjectured for a scheme based on SVD and patching [4].
A detailed analysis for general models and higher spatial
dimensions is an interesting topic for future research.

Chern number.— Finally, we consider the Chern num-
ber, C, for the Haldane model at µ = 0 and � = 1. To
avoid cumbersome gauge-fixing procedures, we use the
gauge-invariant method described in Ref. [22]. First, we
discretize the Brillouin Zone (BZ) into 2R

⇥2R plaque-
ttes. Then, the Chern number can be obtained from
a sum over plaquettes, C ⇡

1
2⇡i

P
k2BZ F (k), where

F (k) ⇡ �i arg(h k1 | k2ih k2 | k3ih k3 | k4ih k4 | k1i)
is the Berry flux through the plaquette with corners
k1 . . .k4, and | ki are valence band wave functions.

Close to the transition, for small �m = m � mc, the
band gap is 2�m. This induces peaks of width ⇠ �m in
the Berry flux F (k), shown in Figs. 3(a, b) for �m = 10�5.
There, we used a fused quantics representation with R =
20, ensuring a mesh spacing 2�R well smaller than �m.
Whereas a calculation of C via direct summation or SVD
unfolding would require 22R

⇡ 1012 function evaluations,
QTCI is much more e�cient: for a relative tolerance of
✏ = 10�10, it needed only 4⇥105 samples (and 20 s runtime
on a single core of an Apple M1 processor). It yielded a
QTT with maximum bond dimension Dmax = 50, and a
Chern number within 10�6 of the expected value C = �1

1D

2D

Future Directions – Continuum Functions



Payoff: can machine learn continuous functions

Continuum amplitude encoding

See https://tensornetwork.org/functions   
for more details and key references

Future Directions – Continuum Functions

http://www.apple.com


Future Direction #2: 
Tensor Train Recursive Sketching  

Algorithm



Future Directions – Recursive Sketching Algorithm

Talked a lot about representations

But real power is in algorithms

Tensor networks = high dimensional linear algebra

≈

Should have deterministic algorithms (like QR, SVD, ...)



Future Directions – Recursive Sketching Algorithm

The "tensor train recursive sketching" (TTRS) 
algorithm estimates a probability distribution from 
samples

≈

samples

true distribution
tensor network  
approximation



Future Directions – Recursive Sketching Algorithm

Very similar to "recursive SVD" for making MPS

<latexit sha1_base64="/BZkSkmwKfbPGlrvFOFMWdO1P0M="></latexit>� <latexit sha1_base64="/BZkSkmwKfbPGlrvFOFMWdO1P0M="></latexit>�
≈



Future Directions – Recursive Sketching Algorithm

But replace tensor with 
sum over training data

∑
d



And apply "sketch" tensors to right-hand side

=

∑
d

ϕ1

s1 r2

s1 r2

Future Directions – Recursive Sketching Algorithm

when performing sum, to "broaden" data



ϕ1

s1 r2

s1 r2add 
to

And apply "sketch" tensors to right-hand side

Future Directions – Recursive Sketching Algorithm

when performing sum, to "broaden" data



ϕ1

s1 r2

s1 r2add 
to

And apply "sketch" tensors to right-hand side

Future Directions – Recursive Sketching Algorithm

when performing sum, to "broaden" data



ϕ1

s1 r2

s1 r2add 
to

And apply "sketch" tensors to right-hand side

Future Directions – Recursive Sketching Algorithm

when performing sum, to "broaden" data



ϕ1

s1 r2

s1 r2add 
to

And apply "sketch" tensors to right-hand side

Future Directions – Recursive Sketching Algorithm

when performing sum, to "broaden" data



ϕ1

s1 r2

s1 r2add 
to

And apply "sketch" tensors to right-hand side

Future Directions – Recursive Sketching Algorithm

when performing sum, to "broaden" data



ϕ1

s1 r2

s1 r2add 
to

And apply "sketch" tensors to right-hand side

Future Directions – Recursive Sketching Algorithm

when performing sum, to "broaden" data



SVD of   recovers first MPS tensorϕ1

Future Directions – Recursive Sketching Algorithm

≈
ϕ1 U1

s1 r2

First tensor of distribution 
want to learn:

Then repeat recursively...



Future Directions – Recursive Sketching Algorithm

TTRS can accurately reconstruct probability distribution 
of disordered Ising chain

Distance of 
estimate from 
true distribution 

    
||p − A( ̂p) ||

||p ||

log(Number of samples)

Goes as  
for large training 
set size.

1/ NT

Provably optimal sketches known



For more details of TTRS algorithm, 
see following lecture and slides

Future Directions – Recursive Sketching Algorithm

YouTube Link  (https://youtu.be/Qbnek0yjZrg)

Slides Link  (https://itensor.org/miles/Trieste02TTRS.pdf)

References: Generative Modeling via Tensor Train Sketching, arxiv: 2202.11788 
Generative Modeling via Hierarchical Tensor Sketching, arxiv: 2304.05305

https://youtu.be/Qbnek0yjZrg
https://itensor.org/miles/Trieste02TTRS.pdf


Future Direction #3: 
Tensor Cross Interpolation 

Algorithm



Future Directions – Tensor Cross Interpolation

The "tensor cross interpolation" (TCI) algorithm 
learns a function from calls to that function 

≈

"black box" 
function

true function f
MPS/TT  
approximation

f(s1, s2, s3, s4, s5, s6, s7, s8)

s1 s2 s3 s4 s5 s6 s7 s8



Future Directions – Tensor Cross Interpolation

It is an "active learning" algorithm

f(s1, s2, s3, s4, s5, s6, s7, s8)

s1 s2 s3 s4 s5 s6 s7 s8

get values  
from f

discover important 
inputs to f



Future Directions – Tensor Cross Interpolation

Invented and refined in following papers: 
• I. Oseledets and E. Tyrtyshnikov, TT-Cross Approximation for 

Multidimensional Arrays, Linear Algebra Appl. 432, 70 (2010). 

• D. V. Savostyanov, Quasioptimality of Maximum- Volume Cross 
Interpolation of Tensors, Linear Algebra Appl. 458, 217 (2014) 

• S. Dolgov and D. Savostyanov, Parallel Cross Interpolation for High-
Precision Calculation of High-Dimensional Integrals, Comput. Phys. 
Commun. 246, 106869 (2020) 

• Núnẽz Fernández, et al., Learning Feynman Diagrams with Tensor 
Trains, PRX 12, 041018 (2022)

Dmitry SavostyanovIvan Oseledets Yuriel Núnẽz Fernández



Lifts the idea of the "interpolative decomposition" 
of a matrix to tensor networks

Future Directions – Tensor Cross Interpolation

Given some matrix M, can reconstruct from a 
subset of columns

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

≈

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

[
1 ⋅ 0 0 ⋅ ⋅
0 ⋅ 0 1 ⋅ ⋅
0 ⋅ 1 0 ⋅ ⋅ ]



1 2 1 1 2 1

[(2,1,1,2,1)
(2,1,1,2,2)]

1 2 1 1 2 1

=

[1
2][(2,1)

(2,2)](1,2,1)
(1,2,2)
(2,2,2)

(1,1,2,1)
(1,1,2,2)
(2,1,2,2)
(1,2,2,2)

Leads to new MPS "gauge" with interpolation 
property

Future Directions – Tensor Cross Interpolation

exact on 1,2,1,1,2,1 entry



Future Directions – Tensor Cross Interpolation

Instead of viewing original tensor as an 
array, think of it as a callable function

s1 s2 s3 s4 s5 s6

= f(s1, s2, s3, s4, s5, s6) =

Can just be a piece of code

Must be able to ask function for any element the  
TCI algorithm wants



Future Directions – Tensor Cross Interpolation

We already saw yesterday the demo of learning

<latexit sha1_base64="2U3RKp3A50dqOTqO6GNDYxb/QDs="></latexit>

f(x) =

NgX

g=1

age
�wg(x�xg)

2
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+ 0.4 ·⇥(x)

40 Gaussians, random location, width, & height 
+ a sharp step at 0.4



Future Directions – Tensor Cross Interpolation

Next demo: 2D function and optima

50 2D Gaussians, random location, width, & height



How were optima (global min and max) found?

Very interesting proposal called "TTOpt" [1]

Claim: TCI usually "encounters" global min and max

Alternatively can use MPS perfect sampling strategies [2]

[1] Sozykin, Chertkov, Schutski, Phan, Cichocki, Oseledets, TTOpt, NeurIPS (2022) 
[2] Chertkov, Ryzhakov, Novikov, Oseledets, arxiv:2209.14808

Future Directions – Tensor Cross Interpolation



Fun paper using TTOpt to 
control a real robot arm! *

* Shetty, Lembono, Loew, and Calinon, Tensor Train for Global Optimization Problems in Robotics

3

(a)

Figure 1. Solutions from TTGO for motion planning of a
manipulator from a given initial configuration (white) to a final
configuration (dark). The obtained joint angle trajectories result
in different paths for the end.effector which are highlighted by
dotted curves in different colors. The multimodality is clearly
visible from these solutions.

planning problems with manipulators. In Section 6 and 7,
we conclude the paper by discussing how our approach could
lead to new ways of solving a variety of problems in robotics.
We also discuss here the limitations and future work.

2 Related work

This work intersects with several research directions. Firstly,
we target robotics applications that are formulated as
optimization problems. Our framework provides a way to
predict a good initialization for the optimization solver.
At the same time, it also provides a principled way to
obtain multiple solutions of a given optimization problem.
Finally, the proposed framework relies on tensor methods.
We discuss each topic briefly in this section.

2.1 Optimization in Robotics
Many problems in robotics are formulated as optimization
problems. For example, recent work in motion planning
relies on trajectory optimization to plan the robot motion
(e.g., CHOMP (Zucker et al. 2013), STOMP (Kalakr-
ishnan et al. 2011), TrajOpt (Schulman et al. 2014),
GPMP (Mukadam et al. 2018)). Inverse kinematics for
high dimensional robots is usually formulated as nonlinear
least squares optimization (Sugihara 2011) or Quadratic
Programming (QP) (Escande et al. 2010). In control,
optimization-based controllers take the form of Task Space
Inverse Dynamics (TSID) controller formulated as QP prob-
lem (Del Prete and Mansard 2016), or finite horizon optimal
control (Mastalli et al. 2020; Kleff et al. 2021). The opti-
mization framework offers a convenient way to transfer the
high-level requirement (e.g., energy efficiency, maintaining
orientation) to cost functions or constraints. Furthermore, the
availability of off-the-shelf optimization solvers and tools for
automatic gradient computations allow researchers to focus
more on the problem formulation.

However, most of the solvers used in robotics are
local optimizers whose performance depend highly on
the initialization, especially since most robotics problems
are highly non-convex. Even state-of-the-art solvers such
as TrajOpt can fail on a simple problem with poor
initialization (Lembono et al. 2020b). The initialization
determines both the convergence speed, the solution quality,
and the success rate of the solver. This motivates further
research on how to predict good initialization for a given
optimization problem.

2.2 Predicting good initialization
A majority of works that attempt to predict good
initialization rely on a database approach, often called
trajectory library (Stolle and Atkeson 2006) or memory of
motion (Mansard et al. 2018). The idea is to first build
a database of precomputed solutions offline. This database
can be constructed from expert demonstrations (Stolle et al.
2007), using the optimization solver itself (Jetchev and
Toussaint 2009), or using the combination of a global
planner and the optimization solver (Dantec et al. 2021).
Once the database is constructed, we can predict a good
initial guess (i.e., a warm start) for a given task by
formulating it as a regression problem that maps the task
to the initial guess. We can then use the database to train
different function approximation techniques (e.g. k-Nearest
Neighbors, Gaussian Process Regression, Gaussian Mixture
Regression, Neural Network) to learn this map. During
online execution, we query the function approximator to
provide us with the initial guess of a given problem.
While the formulation is easy to implement, especially
since there are many function approximators easily available,
the database approach suffers from two main issues: non-
convexity and multimodality.

Firstly, the database approach requires computing good
solutions to be stored in the database. With the complexity of
general robotics problems, computing the solutions is often
not trivial. The database ideally covers the whole range of
possible tasks, but many tasks are difficult to solve without a
good initialization to the solver. Some work overcome this by
relying on a global planner to provide the good initialization
when building the database (Dantec et al. 2021; Lembono
et al. 2020a), but it remains difficult to cover the whole
solution space efficiently.

Assuming we have access to a suitable database and
are prepared to train function approximators, we must take
into account the fact that many robotics problems have
multiple solutions, making it challenging for most function
approximators to accurately approximate this one-to-many
mapping. Often, such approximators tend to average the
different solutions, resulting in poor predictions. Several
attempts have been proposed to handle the challenge of
multimodal prediction using techniques such as Gaussian
Mixture Regression (Lembono et al. 2020b) or Mixture
Density Networks (Brudermüller et al. 2021). While these
attempts improve standard function approximators, these
approaches still exhibit averaging behaviors that can lead to
suboptimal predictions. One of the reasons for this is the
difficulty in constructing a suitable database. For example,
for mixture models to work effectively, the database must
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Figure 2. For a given matrix P (top-left), suppose we know r
independent columns indexed by i2 = (i2,1, . . . , i2,r), i.e.,
P:,i2 2 Rn1⇥r and r independent rows indexed by
i1 = (i1,1, . . . , i1,r), i.e., Pi1,: 2 Rr⇥n2 , with their intersection
Pi1,i2 2 Rr⇥r being nonsingular. Then, by skeleton
decomposition we have P̂ = P:,i2P

�1
i1,i2

Pi1,:. If rank(P ) = r,
then P̂ = P (bottom row). For r < rank(P ) we obtain a
quasi-optimal approximation, P̂ ⇡ P (middle row). The right
figures show the rows and columns selected from the original
matrix by the cross approximation algorithm to find the skeleton
decomposition.

with high probability (Goreinov et al. 2010). This
is very useful for TTGO as we are interested in
finding the maxima from a tensor (discrete analogue
of a probability density function) and the skeleton
decomposition preserves this information.

• Cross approximation algorithms directly find the
factors without computing and storing the whole
matrix.

3.5 Tensor Train Decomposition
Similar to matrix factorization, tensor factorization allows
us to represent a tensor by its factors. Among the popular
factorization techniques, we concentrate in this work on
the Tensor Train (TT) decomposition. TT decomposition
encodes a given tensor compactly using a set of third-
order tensors called cores. A d-th order tensor P 2

Rn1⇥···⇥nd in TT format is represented using a tuple of
d third-order tensors (P1, . . . ,Pd). The dimension of the
cores are given as P1

2 R1⇥n1⇥r1 ,Pk
2 Rrk�1⇥nk⇥rk ,

k 2 {2, . . . , d�1}, and Pd
2 Rrd�1⇥nd⇥1 with r0 = rd =

1. As shown in Figure 3, the i-th element of the tensor in this
format, with i 2 I = {(i1, . . . , id) : ik 2 {1, . . . , nk}, k 2

{1, . . . , d}}, is simply given by multiplying matrix slices
from the cores:

Pi = P1
:,i1,:P

2
:,i2,: · · ·P

d
:,id,:, (6)

where Pk
:,ik,: 2 Rrk�1⇥rk represents the ik-th frontal slice

(a matrix) of the third-order tensor Pk. The dimensions of
the cores are such that the above matrix multiplication yields
a scalar. The TT-rank of the tensor in TT representation
is then defined as the tuple r = (r1, r2, . . . , rd�1). We
call r = max (r1, . . . , rd�1) as the maximal rank. For any

given tensor, there always exists a TT decomposition (6)
(Oseledets 2011).

Similarly to (5), we can also obtain a continuous
approximation of the function P as

P (x1, . . . , xd) ⇡ P 1(x1) · · ·P
d(xd), (7)

where P k(xk), k 2 {1, . . . , d} is obtained by interpolating
each of the core, analogously to the matrix example in (4)
(see Appendix A.1 for more detail). We overload the
terminology again to define the continuous TT representation
as

Px = P (x1, . . . , xd), 8x 2 ⌦x.

Due to its structure, the TT representation offers
several advantages for storage and computation. Let n =
max(n1, . . . , nd). Then, the number of elements in the TT
representation is O(ndr2) as compared to O(nd) elements
in the original tensor. For a small r and a large d,
the representation is thus very efficient. As explained in
Section 3.3, the existence of a low-rank structure (i.e., a small
r) of a given tensor is closely related to the separability of the
underlying multivariate function. Although separability of
functions is not a very well understood concept, it is known
that smoothness and symmetry of functions often induces
better separability of the functions. By better, we mean
fewer low-dimensional functions in the sum of products
representation. The degree of smoothness can be formally
defined using the properties of higher-order derivatives,
however, roughly speaking, it implies the degree of variation
of the function across its domain. For example, a probability
density function in the form of a Gaussian Mixture Model
(GMM) is considered to become less smooth as the number
of mixture components (i.e., multi-modality) increases or the
variance of the component Gaussians decreases (i.e., sharper
peaks).

3.6 TT-Cross
The popular methods to find the TT decomposition of a
tensor are TT-SVD (Oseledets 2011), TT-DMRG (Dolgov
and Savostyanov 2020), and TT-cross (Savostyanov and
Oseledets 2011). TT-SVD and TT-DMRG, like matrix SVD,
require the full tensor in memory to find the decomposition,
and hence they are infeasible for higher-order tensors.
TT-cross approximation (TT-cross) is an extension of the
cross approximation technique explained in Section 3.4 for
obtaining the TT decomposition of a tensor. We refer the
readers to Oseledets and Tyrtyshnikov (2010); Savostyanov
and Oseledets (2011) for more detail on how the matrix
cross-approximation algorithm described in Section 3.4 can
be adapted to find the TT decomposition using TT-cross. It is
appealing for many practical problems as it approximates the
given tensor with a controlled accuracy, by evaluating only a
small number of its elements and without having to compute
and store the entire tensor in the memory. The method needs
to compute only certain fibers of the original tensor at a time
and hence works in a black-box fashion.

Suppose we have a function P and its discrete analogue P
(a tensor). Given the desired accuracy for the approximation
✏, TT-cross returns an approximate tensor in TT format P̂ =
TT-cross(P, ✏) to the tensor P by querying only a portion
of its elements (O(ndr2) evaluations instead of O(nd)).
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Figure 3. TT decomposition is an extension of matrix decomposition techniques to higher dimensional arrays. With a matrix
decomposition, we can access an element of the original matrix by multiplying appropriate rows or columns of the factors. Similarly,
an element of a tensor in TT format can be accessed by multiplying the selected slices (matrices represented in red color) of the
core tensors (factors). The figure depicts examples for a 2nd order, 3rd order, and a 4th order tensor.

The maximal TT-rank r is determined by the algorithm
depending on the ✏ specified. The model is very efficient if
the rank r of the tensor is low, which is typically the case
in many engineering applications, including robotics. Thus,
TT-cross avoids the need to compute and store explicitly the
original tensor, which may not be possible for higher-order
tensors. It only requires computing the function P that can
return the elements of the tensor P at various query points,
i.e., the fibers of the tensor P .

3.7 TT Distribution
Suppose we use the tensor P in TT format to approximate
an unnormalized probability density function P within the
discretization set X of the domain ⌦x. We can then construct
the corresponding probability distribution that we call TT
distribution,

Pr(x) =
|Px|

Z
, x 2 ⌦x, (8)

where Z is the corresponding normalization constant.
Alternatively, we could also define the TT distribution to
be Pr(x) = P2

x
Z . All the techniques, such as conditional

sampling and prioritized sampling, used in this paper can
also be adapted to this distribution. However, for simplicity
of presentation, we do not consider it here.

Due to the separable structure of the TT model, we
can get the exact samples from the TT distribution in
an efficient manner without requiring to compute the
normalization factor Z. In the next section, we provide
details about sampling from the above distribution for the

discrete case x 2 X which is adapted from a continuous
version introduced in Dolgov et al. (2020).

3.8 Sampling from TT distribution
Consider a probability distribution given by (8). For the
simplicity of the presentation, we assume Z = 1 as we
will not require the normalization constant to be known for
sampling from the above distribution. The distribution can be
expressed as a product of conditional distributions

Pr(x1, . . . , xd) = Pr1(x1)Pr2(x2|x1) · · ·

· · · Prd(xd|x1, . . . , xd�1),

where

Prk(xk|x1, . . . , xk�1) =
�k(x1, . . . , xk)

�k�1(x1, . . . , xk�1)

is the conditional distribution defined using the marginals

�k(x1, . . . , xk) =
X

xk+1

· · ·

X

xd

Pr(x1, . . . , xd).

Let �0 = 1. Now, using the above definitions, we
can generate samples x ⇠ Pr by sampling from each
of the conditional distributions in turn. Each conditional
distribution is a function of only one variable, and in the
discrete case it is a multinomial distribution, with

xk ⇠ Prk(xk|x1, . . . , xk�1), 8k 2 {1, . . . , d}

However, this is computationally intensive as sampling
xk requires the conditional distribution Prk which in
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Figure 11. The motion from the initial configuration to the final
configuration in the real robot implementation of one of the
TTGO solutions for the reaching task.

Figure 12. Real robot implementation of one of the TTGO
solutions for the pick-and-place task. The motion from the initial
configuration to the final configuration (same as the initial
configuration in this case) via the picking configuration and
placing configuration is depicted.

For the 2-D planar robot, we replicate the setting in Figure
7 of Osa (2020), but we move the obstacle positions and
add two more obstacles to increase the difficulty of the
problem. With a fixed task parameter, the training of the TT
model only takes less than 7 seconds, and we easily obtain
multiple solutions. Figure 13 shows four solutions obtained
by TTGO after the refinement step. We can clearly see the
multimodality of the solutions.

For the Franka Emika manipulator, we use the same
setting as in Section 5, i.e., with the shelf, table, and box as
the collision objects. In addition, we add a cost to maintain
the end-effector pose (horizontal) throughout the trajectory.
The initial and final configurations are set such that both end-
effector positions are located within the shelf, and they are
computed using TTGO for IK, as explained in Section 5.1.2.
With this setting, we are able to obtain multiple solutions
consistently for all possible scenarios (we test with different
end-effector positions within the shelf) with 10 iterations
of TT-cross and a maximal TT-rank of 5. With the fixed
task parameter, it only takes under 5 seconds to obtain the
solutions (includes TT modeling, sampling and fine tuning).
Some solutions for a given task are shown in Figure 1.

In comparison, SMTO (Osa 2020) takes ⇠ 2 minutes
to solve the 2-D planar robot problem and the 7-DoF
manipulator example (using their MATLAB code), whereas
LSMO (Osa 2022) takes even longer, i.e., more than five
minutes (according to their paper). For the 2-D example,
SMTO fails to find any solution when we added more
obstacles as in Figure 13, even after increasing the covariance
by 100 times. This is because none of the initial samples
from the proposal distribution is close to the feasible region.

We also tried increasing the number of samples from 600
(standard value) to 2000, but it still cannot find any solution.
Furthermore, adding the number of samples by ⇠ 3 times
increases the computation time of SMTO by ⇠ 3 times, i.e.,
from ⇠ 150s to ⇠ 500s.

6 Discussion

6.1 Quality of the Approximation
In this paper, we used a TT model to approximate an
unnormalized PDF. The quality of the approximation highly
depends on the TT-rank. If the approximation is good, the
fine-tuning step is often not necessary. A nice property of
TTGO that is derived from the TT-Cross method is that the
model capacity can be incrementally augmented (i.e., non-
parametric modeling). By increasing the number of iterations
of TT-Cross and allowing a higher rank of the TT model,
the approximation accuracy can be improved continuously.
Furthermore, we can also use the continuous version of the
TT model to allow continuous sampling. For initialization
purposes, though, we found that the discrete version is
enough, as the initialization does not have to be precise.

When training the TT model, we can evaluate the quality
of the approximation by picking a set of random indices,
computing the value of the approximate function at those
indices, and comparing it against the actual function value.
This is an important evaluation for most applications that
aim at finding an accurate low-rank TT decomposition of a
given tensor across the whole domain. For our case, though,
we are only interested in the maxima of the function, and
we do not really care about the approximation accuracy
in the low-density region, i.e., the region with high cost.
Even if TT-Cross cannot find an accurate low-rank TT
representation across the whole domain (e.g., due to non-
smoothness), it can still capture the maximal elements
robustly (Sozykin et al. 2022; Goreinov et al. 2010) as the
interpolation in the TT-Cross algorithm is done using the
high magnitude elements. In practice, we found that even
when the approximation errors do not converge during the
training, the resulting samples from the TT model are still
very good as initialization.

6.2 Computation Time
The computation time of TTGO can be divided into offline
computation, i.e., the time to construct the TT model P , and
online computation, i.e., the time to condition the TT model
on the given task parameters and to sample.

The offline training uses an NVIDIA GEFORCE RTX
3090 GPU with 24GB memory, while the sampling time
evaluation is performed on an AMD Ryzen 7 4800U laptop.

The offline computation time depends on the number of
TT-Cross iterations, the maximum rank r, and the discretiza-
tion (i.e., how many elements along each dimension of the
tensor). The number of function evaluations has O(ndr2)
complexity hence linear in terms of the number of dimen-
sions and the number of discretization points. The compu-
tation time of a single cost function also has a significant
influence on the TTGO computation time. However, we used
parallel implementation with GPU that allows us to construct
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For more details of Tensor Cross algorithm, 
see following lecture and slides

YouTube Link  (https://youtu.be/PFijeMaRGUc)

Slides Link  (https://itensor.org/miles/Trieste03TCI.pdf)

Future Directions – Tensor Cross Interpolation
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https://itensor.org/miles/Trieste03TCI.pdf


Many other works I did not have time to cover e.g.

Tensor Network Machine Learning

• Tree networks of low-rank (CP rank) tensors

• Compressing neural network weights with  
tensor networks
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FIG. 1. A TTN classifier takes an image x 2 RN as input, transforms it to a feature vector �(x) in a much higher-dimensional
space (C2)⌦N , and then applies the weight tensor W : (C2)⌦N ! CL, realized by a TTN, to obtain the decision function (4).
(a) A TTN classifier with tree branching ratio b = 2 for 1D images. (b) Tensors A(⌧)

i of intermediate layers are linear maps from
(Cm)⌦b to Cm. In low-rank TTN classifiers, we reduce computation costs and improve generalization properties by imposing
constraints (12) on the CP ranks of the tensors. (c) 2D image TTN classifier with branching ratio b = 2. (d) 2D image TTN
classifier with b = 4. See, for example, Refs. [1, 22] for details on the employed graphical representation for tensor networks.

The procedure ends in layer T = logb N with the top
tensor A(T )

2 CL⇥mb

mapping the remaining b level-
(T �1) feature vectors into the L-dimensional vector (4),

f(x) = A(T )
·
�
'(T�1)

1 ⌦ · · ·⌦'(T�1)
b

�
2 CL. (10)

So, the weight tensor W is chosen as a network of smaller
tensors A(1)

i , A(2)
i , . . . , A(T ), each assigned to a vertex of

a tree graph and all except for the input indices of the
tensors A(1)

i and the output index of A(T ) being con-
tracted. Each edge of the graph is associated with a
common index µ of the two tensors of the corresponding
vertices, which we sum over in the tensor contractions.
The minimization of the loss function (7) with respect to
the elements of the tensors {A(⌧)

i } can be accomplished
through gradient-based optimization methods.

Figure 1 shows three examples. For a one-dimensional
image with N = 2T pixels, each layer of a TTN classifier
with branching ratio b = 2 halves the number of fea-
ture vectors (Figure 1a). For a two-dimensional image
with N = Nx ⇥ Ny = 2T pixels, a TTN classifier with
branching ratio b = 2, can alternatingly coarse-grain in
the x and y direction, each layer halving the number of
feature vectors as illustrated in Fig. 1c. Similarly, for
N = Nx ⇥ Ny = 2T ⇥ 2T , each layer of a TTN classifier
with branching ratio b = 4, can simultaneously coarse-
grain both directions, mapping 2 ⇥ 2 patches into one
feature vector as shown in Fig. 1d. The approach is very
flexible and one can, for example, work with networks
that contain tensors of varying order.

When we do not impose any constraints on the tensors
A(⌧)

i , we refer to the method as a full TTN classifier. The
number of parameters and the cost for the loss function
evaluation then scale as

O(Nmb+1) and O(|D|Nmb+1), (11)

respectively. So, the larger the bond dimension m, the
higher the expressiveness (representation power) of the

TTN classifier and the higher the computation costs. We
will also see how large m can result in overfitting. Gen-
erally, larger branching ratios b have the advantage of
reducing the graph distance of pixels in the tensor net-
work. When keeping m constant, larger b allows for a
more efficient extraction of non-local class features.

II.3. TTN with low-rank tensors and tensor
dropout

The main contribution of this work is to improve
tensor-network machine learning by introducing more
flexibility concerning the number of parameters and sub-
stantially reducing computation costs. The idea, which
we will demonstrate for the TTN classifiers is to impose
a constraint on the canonical polyadic (CP) rank of all
tensors in the tensor network. Similarly, we have recently
introduced and tested CP rank constraints for tensor net-
work state simulations of quantum systems [52].

The canonical polyadic decomposition [53–56] is a gen-
eralization of the singular value decomposition to higher-
order tensors, which expresses a tensor A(⌧)

i as the sum
of direct products of vectors. For example, every ten-
sor A(⌧)

i 2 Cm⇥mb

from one of the intermediate layers
1 < ⌧ < T can be written in the form

A(⌧)
i =

rX

k=1

ã⌧,k
i ⌦ a⌧,k

i1
⌦ · · ·⌦ a⌧,k

ib
, (12)

with order-1 tensors (vectors) ã⌧,k
i ,a⌧,k

i1
, . . . ,a⌧,k

ib
2 Cm.

The minimal r satisfying Eq. (12) is called the canonical
polyadic rank or candecomp-parafac rank of A(⌧)

i .
In a low-rank TTN classifier, we choose every tensor

to be of the form (12) with a fixed r. The same form is
used for the input-layer tensors A(1)

i with a1,k
i1

, . . . ,a1,k
ib

2

C2 and for the top tensor A(T )
i with ãT,k

2 CL. The

Chen, Barthel, 
arxiv:2305.19440

} ≈
Novikov et al., Advances in Neural Information Processing (2015) (arxiv:1509.06569)

Garipov, Podoprikhin, Novikov, arxiv:1611.03214
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Outlook

We saw a framework for machine learning using tensor 
networks

Goal of capturing power of tensor networks for physics 
but for broader applications

H =

|ψ0⟩ =

DMRG TNML

Data



Outlook

For images / computer vision, promising but not yet 
competitive: 

• tensor networks have lots of parameters (relatively) 

• gradient descent is therefore slow 

• but linear algebra algorithms much faster than gradient 

• tensor networks are just linear algebra in  
high dimensions

Does it really deliver? It depends... (as of 2024)



Outlook

Does it really deliver? It depends... (as of 2024)

For low-to-medium dimensional functions, 
very powerful
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+ 0.4 ·⇥(x)

Two novel algorithms for TN machine learning 

What promise might they hold?


