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Sample Codes

Quick demo - tensor ML is powerful!

Let's machine learn the following function
into a tensor network:

40 Gaussians, random location, width, & height
+ a sharp step at 0.4

Ny

f(gj) — Z age_wg (z—xg)”

g=1
+ 0.4-O(x)

v




Today's Talk

Brief review of tensor networks

Why tensor networks for machine learning?
Inspiration from DMRG.

Basis and amplitude encodings of data

Example applications

of tensor network machine learning



Tensors — Penrose Diagram Notation

N-index tensor = shape with N lines
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Low-order examples:

Uj Mij
S
J
vector matrix order-3

tensor



Tensors — Penrose Diagram Notation

Joining wires means contraction:
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Tensors

We are familiar with tensors from quantum many-body

‘\I!> — Z \P818283.--8n |818283 .« o Sn> S j - 07 1

S185283°*Sn,

Amplitudes form a big tensor!

S1 82 83 S4 S5 S6




Tensors

Any function of discrete variables can be represented as a
tensor

S1 S92 83 S4 S5 Sg

J(81. 82, 83, 84, 55, 86) = “

All values of f inside



Tensors

Any function of discrete variables can be represented as a
tensor

1 2 2 2 1 2

E—

1.2

J(1,2,2,2,1,2)



Tensors

Any function of discrete variables can be represented as a
tensor
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1(2,2,2,2,2,1)



Tensors

Any function of discrete variables can be represented as a
tensor

2 1 2 2 2 2
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1(2,1,2,2,2,2)



Tensors

Any function of discrete variables can be represented as a
tensor

2 1 1 2 2 2

E—

2.7

2, 1,1,2,2,2)



Tensors

Later we will see technique to encode
continuous variable functions too

dl d2 d3 d4 ds d6

J0) = J1O-dydyddsdydsde) = “

J(x)



Tensor Networks

Why are tensors challenging?

‘ 2 parameters (vector)
6 4 parameters (matrix)

“ 8 parameters (3-index tensor)

“ 2" parameters for n-index tensor

Tensor with 50 indices would have
1,125,899,906,842,624 ~ 1015 parameters



Tensor Networks

Just as factorizing (SVD) a matrix reduces cost
of memory and compute

K

. b

X

¥ is matrix rank



Tensor Networks

Can recursively factor (compress) a tensor as well

K

X
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Tensor Networks

Can recursively factor (compress) a tensor as well
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Tensor Networks

Can recursively factor (compress) a tensor as well
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Tensor Networks

Result is a matrix product state or tensor train

X

Advantage if internal indices small, yet accuracy is good
(small "bond dimension" or "rank"y )



Tensor Networks

For large enough y ( = 2"%), MPS can represent
any tensor

X

Most algorithms require »° computation,
7> memory



Can efficiently sum MPS in compressed form:

AAAAAREAAAAA M

Y

multiply by other networks:

133333 - reeres

and perfectly sample:




Tensor Networks

There are other tensor networks too,
with their own algorithms and degrees of expressive power

R B
~
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tree tensor network PEPS / tensor grid
/ hierarchical Tucker



Tensor Network Algorithms

Power of tensor networks is
algorithms

Seminal tensor network algorithm is DMRG
(density matrix renormalization group)

(W H|)

min = F

v (YlY)

Finds ground state and its energy



Tensor Network Algorithms

DMRG algorithm

Assume we can write H as a tensor network



Tensor Network Algorithms

DMRG algorithm

DMRG finds its ground state as an MPS tensor network




Tensor Network Algorithms

DMRG algorithm

Energy is

(w|

%
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DMRG algorithm

DMRG uses an "alternating” strategy to optimize
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DMRG uses an "alternating” strategy to optimize
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Tensor Network Algorithms

DMRG algorithm

At each step, solve a "mini" diagonalization problem

(w|

%



Tensor Network Algorithms

DMRG algorithm

At each step, solve a "mini" diagonalization problem*

*technical note: for efficiency, frozen tensors are contracted in three groups, not exactly as shown above



Tensor Network Algorithms

DMRG algorithm

At each step, solve a "mini" diagonalization problem*

*technical note: for efficiency, frozen tensors are contracted in three groups, not exactly as shown above



Tensor Network Algorithms

DMRG algorithm

DMRG in action - solving Heisenberg chain

S=1/2 Heisenberg Model, N = 100, Sweep = 1, Energy = -2.3638064

ong
Bl

|




Tensor Network Algorithms

DMRG algorithm

DMRG in action - solving Heisenberg chain

S=1/2 Heisenberg Model, N = 100, Sweep = 1, Energy = -2.3638064
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Tensor Network Algorithms

DMRG algorithm is extremely powertful
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FIG. 5. CPU time (seconds) for the Hubbard-Holstein model.

McCulloch, Osborne, arxiv:2403.00562 (2024)



Tensor Network Machine Learning

Can we harness the power of tensor networks
for machine learning?

Cat




Tensor Network Machine Learning

Lightning review of machine learning concepts



Machine Learning Concepts

Sometimes have large "data set" up front:




Machine Learning Concepts

Can divide into training / validation / test

validation

training




Machine Learning Concepts

Sometimes given no data, but can call a function:

distance_from_goal(position) — number

Image credit: Sofia Kolchanova, JetBrains



Machine Learning Concepts

Various "tasks" in machine learning:

e Supervised learning
predict labels for data, classify data

|
y



Machine Learning Concepts

Various "tasks" in machine learning:

* Unsupervised learning / generative modeling
recover distribution of data, or properties of
that distribution (e.g. "clusters”)




Machine Learning Concepts

Various "tasks" in machine learning:

e Active learning
recover a function by querying at points

J(x) f)

abaVdll MO N




Machine Learning Concepts

In all cases, seek a model function with parameters

data input x
:
f7X)
! _
model parameters &

Optimize parameters 6 until function accomplishes task



Machine Learning Concepts

For example, in supervised learning, model is
f —
fé (x) £ = label

Optimize parameters @ until f outputs maximum value

when 7 is the correct label of input X



Tensor Network Machine Learning

Three challenges for tensor networks:

* representationofdata Q@ Q@ Q9 @ Q@ ?<

e training algorithms 000066
- B
e good problem selection 'MW"W'




Tensor Network Machine Learning

Three challenges for tensor networks:

* training algorithms 00066060

A
» good problem selection "MW"“ E




Tensor Network Machine Learning

Representations of data

Say we are given a piece of data with N components

View as vector of length N

X = [XI,X2,X3, ,XN]




Tensor Network Machine Learning

Representations of data

It data entries are integers, nothing else to do

X = if iy i3 .oy iy i €7
Just use tensor network as model:

9= 0-9-9-9-9-9

Test your knowledge: what are parameters 0 ?



Tensor Network Machine Learning

Representations of data

Say we are given a piece of data with N components

What about continuous entries? X; € R

X = [Xl,.X2,X3, ...,XN]



Tensor Network Machine Learning

Representations of data

Two main encodings of continuous data into tensors

X = [xl,xz,x3, ...,xN]
Basis encoding Amplitude encoding

b, b, by b, bs b, b, by



Tensor Network Machine Learning
Representations of data

Basis encoding

S1 5

58

S SS S6 A)

6b6 .4

For input input size N, use /N indices (high dimensional)

also known as "state encoding"” or "product encoding”



Tensor Network Machine Learning
Representations of data

Amplitude encoding

b, b, by b, bs b, b, by

———

6000600600

For input size N, log(/V) indices (low dimensional)

N/
%



Tensor Network Machine Learning

Basis encoding

Map each pixel
to a vector

_cos(ng)_

Sin(ng)

_cos(gxl)_

Sin(gxl)

_cos(gxz)_

sin(=-x,)

Take (formal) outer product

_cos(§x3)_

sin (=)



Tensor Network Machine Learning

Basis encoding

Another choice of "local feature map" is



Tensor Network Machine Learning

Can make into a function, or machine learning model,
by contracting with a tensor

(X1 Xy ey Xy) = W W weight tensor
REIRRIRRIRRIRN IR
R L B I B L EA LB 1 B




Tensor Network Machine Learning

A very high-order polynomial

J(x5 %5, ..o xy)

+W221111

W W weight tensor

+...

+ W222222

1

X1X2

A3

|

X1 X9 X3 X4 X5 X

1
X6
W“““+W21“11x1+W12“1x2+W“2“1x3...

+ W2121 11

X143

|

+ W12211

XoX3 T+ ...



Tensor Network Machine Learning

Test your understanding: what function is this?

|7(1) ?]—I W weight tensor
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|7(1) ?]—I W weight tensor




Tensor Network Machine Learning

Test your understanding: what function is this?

W weight tensor

— — =
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Tensor Network Machine Learning

Test your understanding: what function is this?

W weight tensor

- —=c
— — =
=)
- —=c
— —=c
— —=c

— 1X2X3x 4)65)66



Tensor Network Machine Learning

Test your understanding: what function is this?

W weight tensor

1
1 |
L |
I 1 |
L |
1 |
L |
I 1 |
L |
I 1 |
L |




Tensor Network Machine Learning

Test your understanding: what function is this?

W weight tensor

1
| |
| |
I | |
| |
I | |
| |
| |
| |
I | |
| |
I | |
| |

= (I +x) +x)(1 +x3)(1 + x)(1 + x5)(1 + x¢)



Tensor Network Machine Learning

Exponentially many weights in general

(X1 Xy ey Xy) = W W weight tensor
REIBRIERIBRIREIE
x| 2 s [ 1 | s | e




Tensor Network Machine Learning

Use tensor network to make efficient

F(Xp, Xy ey Xy) = ?—?—?—?—?—? W weight MPS

1

X1

g

1

%%)

I

1
A3

Higher bond dimension y

I

1

X4

|

111
A51 X6

more representation power




Tensor Network Machine Learning

For supervised learning,

put extra label index \

fx, X9y ooy Xy) = ?—?—?—+—?—? W weight MPS
REIBRIBRIREIEEIE
Dol I B I BRY A AR | B I B




Tensor Network Machine Learning

Train using alternating gradient descent

1

X1

g

1

%%)

I

1
A3

I

1

A4

I

1
A5

|

1
A6

Could use favorite neural network or auto-
differentiation framework (JAX, PyTorch, etc.)



Tensor Network Machine Learning

Train using alternating gradient descent

1

X1

1] 1
%%

I

1
A3

I

1

X4

I

1
A5

|

1
A6

Minimize cost function such as squared error



Tensor Network Machine Learning

Train using alternating gradient descent

fx, Xy ooy Xpy) = ?—?—?—+—?—?
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X1
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I

1
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1
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Minimize cost function such as squared error



Tensor Network Machine Learning

Train using alternating gradient descent

fx, Xy ooy Xpy) = m—+—?—?
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Tensor Network Machine Learning

Train using alternating gradient descent
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Tensor Network Machine Learning

Train using alternating gradient descent
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Tensor Network Machine Learning

Train using alternating gradient descent
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Tensor Network Machine Learning

Train using alternating gradient descent
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Tensor Network Machine Learning

Train using alternating gradient descent
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Tensor Network Machine Learning

Train using alternating gradient descent

fx, Xy ooy Xpy) = m—+—?—?

1

X1

1] 1
%%

I

1
A3

I

1

X4

I

1
A5

|

1
A6

Minimize cost function such as squared error



Tensor Network Machine Learning

Train using alternating gradient descent
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Tensor Network Machine Learning

Train using alternating gradient descent

fx, Xy ooy Xpy) = ?—?—?—+—?—?
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Minimize cost function such as squared error



Tensor Network Machine Learning

Example: Supervised learning of MNIST handwriting

= =
—
=
_ NN E. ]

Train to 99.95% accuracy on 60,000 training images

Obtain 99.03% accuracy on 10,000 test images

(Only 97 mcorrect) Stoudenmire, Schwab, arxiv:1605.05775



Tensor Network Machine Learning

Example: Supervised learning of MNIST handwriting

000000088 00000

2 T T -
AFrr2z2a

Bond dimension

e T T BNV R T
o %% N Gk e
<%y e XYW
Ng OO = h"\=CW
N a) & 4 e o
O SN v L

)

S

e s N Ly
N s~ sk W NN
oSN B Dy~
v~ QL8 o
N Sy N
DHY LN~
DN A RWN S~
e A O VRV
o %N ey W,

Test Set Error

m= 10
m = 20
m = 120

~5% (500/10,000 incorrect)
~2%  (200/10,000 incorrect)

0.97% (97/10,000 incorrect)

Stoudenmire, Schwab, arxiv:1605.05775



Tensor Network Machine Learning

Amplitude encoding

In this representation, indices do not correspond to different
features.

Instead, indices "collectively" access each feature.

Let's see how this works...



Tensor Network Machine Learning

Amplitude encoding

Say we have data vector x

X = [Xpy X1 Xpy v ey Xpy_1] (zero indexed)

Define tensor such that

O 0 0 0 0 0 0 O

aEmmm—— -



Tensor Network Machine Learning

Amplitude encoding

Say we have data vector x

X = [Xpy X1 Xpy v ey Xpy_1] (zero indexed)

Define tensor such that

0O 0 0 0 0 O 0 1

eEmmm—— -



Tensor Network Machine Learning

Amplitude encoding

Say we have data vector x

X = [Xpy X1 Xpy v ey Xpy_1] (zero indexed)

Define tensor such that

O 0 0 0 0 O I O

Emmm—— -



Tensor Network Machine Learning

Amplitude encoding

Say we have data vector x

X = [Xpy X1 Xpy v ey Xpy_1] (zero indexed)

Define tensor such that

O 0 0 0 O O I 1

Emmm—— -



Tensor Network Machine Learning

Amplitude encoding

Say we have data vector x

X = [Xpy X1 Xpy v ey Xpy_1] (zero indexed)

Define tensor such that

O 0 0 0 O I 0 O

Emmm—— -



Tensor Network Machine Learning

Amplitude encoding

Say we have data vector x

X = [Xpy X1 Xpy v ey Xpy_1] (zero indexed)

Define tensor such that

O 0 0 0 O I O 1

Emmm——— -



Tensor Network Machine Learning

Amplitude encoding

Say we have data vector x

X = [Xpy X1 Xpy v ey Xpy_1] (zero indexed)

Define tensor such that

M = XN-1



Tensor Network Machine Learning

Amplitude encoding

Viewed as a quantum state, it is just

X = [Xpy X1 Xpy v ey Xpy_1] (zero indexed)

l

2™ —1
Z) =) zili)
i=0



Tensor Network Machine Learning

Amplitude encoding

To make efficient, again factorize as MPS

- Cmm— ¢ 600000



Tensor Network Machine Learning

Amplitude encoding

To make into a model, contract with weight MPS



Tensor Network Machine Learning

Amplitude encoding

Since indices enumerate entries of x one-by-one,
it is just a 'linear classifier' in tensor form

fX) =wx; +woxo+ ...+ w,x
11 272 n’'n

Not very powerful...



Tensor Network Machine Learning
Amplitude encoding

Make more powerful by repeating ("stacking") data input

Now model contains linear + quadratic terms

=1 —
=1 —

f(.;(:)) = a -+ Wl.xl + ... + Wll(xl)z ~+ lexl.X2 + ...



Tensor Network Machine Learning
Application: Supervised learning of "Fashion-MNIST"
Dilip, Liu, Smith, Pollmann, PRR 4, 043007 (2022)

Use patches of
(a) |0000)|[0) |o011)|@)

amplitude and basis : i.
01|23 =
encoded data 71654 Et
8|9 [10]11 E

(b)

1 o
Obtain 90% test
accuracy (!) USing)( p— 10 (c) 2><2 Original

(b) 0.90 //0—‘\‘—_‘
T 0.8
30.86

o
% 0.84

3
< 0.82

0.80




Tensor Network Machine Learning

Application: Quantum Circuit Learning Models

Wright, Barratt, Green, et al., arxiv 2205.09768 (2022)

Using amplitude encoded data,
propose circuits equaling MPS |
i

Use "stacking" (inputting data multiple times)
to get higher-order functions

Deterministic (no gradient, linear algebra) learning



Tensor Network Machine Learning

Let's do some brief
"theory of tensor network machine learning”...



Tensor Network Machine Learning

Mixing high-dimensional and low-dimensional encoding
gives "universal approximation theorem" for
tensor networks

S, X0, X5, .02, Xpy) =

bl(l) bz(l) br(zl) b1(2) b2(2) br(zZ) b1(3) b2(3) br(z3)

—— —\— ——

bits of x, bits of x, bits of x;

Tensor entries arbitrary, so can store any function on
exponentially fine continuum grid



Tensor Network Machine Learning

Mixing high-dimensional and low-dimensional encoding
gives "universal approximation theorem" for
tensor networks

S, X, X5, ..., Xy) R
bl(l) bz(l) S b1(2) bz(z) e b? b1(3) b2(3) BAS)

And any tensor is representable by MPS with
large enough bond dimension y

No explicit non-linearities, and yet true



Tensor Network Machine Learning

Tensor network learning is a form of kernel learning

9= 099909
e )

=W- ¢(x)

Yet training scales linearly with data set size

Does not use "kernel trick" which scales quadratically



The Future of Tensor Network
Machine Learning



Future Direction #1:
Continuum Functions



Future Directions — Continuum Functions

Continuum amplitude encoding

Especially useful for continuous inputs to tensors

For a function f, evaluate on fine grid of spacing 1/2"

-

f = 1/(0.0000), f(0.0001), f(0.0010), ..., f(O.1111)]



Future Directions — Continuum Functions

One powerful technique is

Continuum amplitude encoding ("quantics tensor train")

Especially useful for continuous inputs to tensors

9

> A'(@)Bi(y)



Future Directions — Continuum Functions

Continuum amplitude encoding

For a function f, evaluate on fine grid of spacing 1/2"

-

f = 1/(0.0000), f(0.0001), f(0.0010), ..., f(O.1111)]



Future Directions — Continuum Functions

Continuum amplitude encoding

For a function f, evaluate on fine grid of spacing 1/2"

-

f = 1/(0.0000), f(0.0001), f(0.0010), ..., f(O.1111)]

Define tensor such that

bl b2 b3 e bn

emmmmmmm— = /(0.5,b,b; b,



Tensor Network Machine Learning

Continuum amplitude encoding

For a function f, evaluate on fine grid of spacing 1/2"

-

f = 1/(0.0000), f(0.0001), f(0.0010), ..., f(O.1111)]

Define tensor such that

O 0 0 O o0 0 o o T ........................ i

GEEmmmm— = /(0.000000)



Tensor Network Machine Learning

Continuum amplitude encoding

For a function f, evaluate on fine grid of spacing 1/2"

-

f = 1/(0.0000), f(0.0001), f(0.0010), ..., f(O.1111)]

Define tensor such that

1 O O () O O () O T ............ >

GEmmmm— = /(0.100000)



Tensor Network Machine Learning

Continuum amplitude encoding

For a function f, evaluate on fine grid of spacing 1/2"

-

f = 1/(0.0000), f(0.0001), f(0.0010), ..., f(O.1111)]

Define tensor such that

1 1 O () O O () O ................... T ..... >

GEmmmm— = /(0.110000)



Tensor Network Machine Learning

Continuum amplitude encoding

For a function f, evaluate on fine grid of spacing 1/2"

-

f = 1/(0.0000), f(0.0001), f(0.0010), ..., f(O.1111)]

Define tensor such that

1 1 O () O O () 1 .................... T ceead >

GEmmm— = /(0.110001)



Future Directions — Continuum Functions

Continuum amplitude encoding

It is a hierarchical representation of data

..................................................................... AR
b, | 0 | I |
b, /I o | 1 | o | 1 ]
bs ol 1 fTojl1jpol 1]10]1]

by [of1folt folrjofrjoltfofrjojrjfol1]




Tensor Network Machine Learning

Continuum amplitude encoding

It is a hierarchical representation of data

0 I
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B
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Tensor Network Machine Learning

Continuum amplitude encoding

It is a hierarchical representation of data

..................................................................... ARG
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Tensor Network Machine Learning

Continuum amplitude encoding

It is a hierarchical representation of data
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Tensor Network Machine Learning

Continuum amplitude encoding

It is a hierarchical representation of data

..................................................................... ARG
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Future Directions — Continuum Functions

Key question: for a given f(x)

is F' low-rank as a tensor network?

N\ bbb bbb



[1] Mazen Ali, Anthony Nouy, Constr Approx

Future Directions — Continuum FUNCtIONS 5 1azen A, Anthony Nouy, anivi2101.11932

[3] Chen, EMS, White, PRX Quantum, arxiv:2210.08468

Low rank for many cases

S s - bbb 60

Tensor network low rank for:

* all smooth enough functions [1.2] g
e functions with finite number of cusps /_\

or discontinuities [1.2]

* any Fourier transform of these [3! \\



Future Directions — Continuum Functions

Examples:

1 o
COS [az — —] > HM
27

vvvvvvvv
0000000000000000000000000000000

sum of 20 | | | | | | |
cosines . >

18

3

T T T T
0000000000000000000000000000000

cosine
+ cusps

vvvvvvvv
0000000000000000000000000000000



Future Directions — Continuum Functions

Works in 1D, 2D, ...

1D

000000000000000000000000000

4000




Future Directions — Continuum Functions

Continuum amplitude encoding

Payoff: can machine learn continuous functions

See https://tensornetwork.org/functions
for more details and key references


http://www.apple.com

Future Direction #2:
Tensor Train Recursive Sketching
Algorithm



Future Directions — Recursive Sketching Algorithm

Talked a lot about representations

But real power is in algorithms

&

Tensor networks = high dimensional linear algebra

Should have deterministic algorithms (like QR, SVD, ...)



Future Directions — Recursive Sketching Algorithm

The "tensor train recursive sketching” (TTRS)
algorithm estimates a probability distribution from
samples

biddddds OCOBBBEOS

samples OSOBS008 guuiludd
0000808 4unadbok

+ true distribution

tensor network

spproximation  GESSSSS




Future Directions — Recursive Sketching Algorithm

Very similar to "recursive SVD" for making MPS

K

o R o N am—

2



Future Directions — Recursive Sketching Algorithm

But replace tensor with
sum over training data

———
l

s bbbbbE



Future Directions — Recursive Sketching Algorithm

And apply "sketch" tensors to right-hand side

51 I

51 I

-

1

when performing sum, to "broaden" data
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Future Directions — Recursive Sketching Algorithm

And apply "sketch" tensors to right-hand side
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when performing sum, to "broaden" data



Future Directions — Recursive Sketching Algorithm

SVD of ¢, recovers first MPS tensor

Sl ]”2
¢1 U1

First tensor of distribution

want to learn: Leseeeee

Then repeat recursively...



Future Directions — Recursive Sketching Algorithm

TTRS can accurately reconstruct probability distribution
of disordered Ising chain

Provably optimal sketches known

Goes as 1/4/N;

10F
; for large training

Distance of

estimate from set size.

/

true distribution |

iy

lp —AP
Ip

0.1 S T R
100 1000 10000
log(Number of samples)



Future Directions — Recursive Sketching Algorithm

For more details of TTRS algorithm,
see following lecture and slides

= (> Premium "

TTRS Algorithm - Sketching

Impose helpful bias by "sketching" the data with

Fuli

—
left sketch right sketch

< > » O 26:40/5;1:%:1E119-11'!0A O broadening

Tensor network for machine learning applications 2

YouTube Link (https://youtu.be/Qbnek0yjZrg)
Slides Link (https://itensor.org/miles/TriesteO2TTRS.pdf)

References: Generative Modeling via Te.nsor Train Sketching, ar>fiv: 220?.11788
Generative Modeling via Hierarchical Tensor Sketching, arxiv: 2304.05305


https://youtu.be/Qbnek0yjZrg
https://itensor.org/miles/Trieste02TTRS.pdf

Future Direction #3:
Tensor Cross Interpolation
Algorithm



Future Directions — Tensor Cross Interpolation

The "tensor cross interpolation” (TCI) algorithm
learns a function from calls to that function

"black box"

function f(Sla S29 S39 S49 S59 S69 S79 SS)

!

MPS/TT S| Sy 83 84 S5 S S7 53

pproximation  GOGOOOSS ~ CEEEEEEE

true function f



Future Directions — Tensor Cross Interpolation

It is an "active learning" algorithm

f(Sla S29 S39 S49 S59 S69 S79 SS)

get values discover important
from t inputs to f

S| Sy S3 84 S5 S S7 Sg

BE886860



Future Directions — Tensor Cross Interpolation

Invented and refined in following papers:

* |. Oseledets and E. Tyrtyshnikov, TT-Cross Approximation for
Multidimensional Arrays, Linear Algebra Appl. 432, 70 (2010).

e D. V. Savostyanov, Quasioptimality of Maximum- Volume Cross
Interpolation of Tensors, Linear Algebra Appl. 458, 217 (2014)

e S. Dolgov and D. Savostyanov, Parallel Cross Interpolation for High-
Precision Calculation of High-Dimensional Integrals, Comput. Phys.

Commun. 246, 106869 (2020)

* NUnéz Fernandez, et al., Learning Feynman Diagrams with Tensor
Trains, PRX 12, 041018 (2022)

lvan Oseledets Dmitry Savostyanov  Yuriel NUnéz Fernandez



Future Directions — Tensor Cross Interpolation

Lifts the idea of the "interpolative decomposition”
of a matrix to tensor networks

Given some matrix M, can reconstruct from a
subset of columns

-
—_—O O
S = O

&
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Future Directions — Tensor Cross Interpolation

Leads to new MPS "gauge" with interpolation

property

(12,1 ]
(1,2,2)

[(2,1,1,2,1) ((1,1,2,1)
2,1,1,2,2)| 1(1,1,2,2)
(2.1,2.2)
(1,22.2)
1 211 21

(2,2,2)

(2,1)
(2,2)

B

— u exact on 1,2,1,1,2,1 entry



Future Directions — Tensor Cross Interpolation

Instead of viewing original tensor as an

array, think of it as a callable function

S| Sy S3 Sy S5 Sg

function f(s1,s2,s3,s4,s5,56)

=f(S1’ S35 835 845 S5, S6) — return 3x(s1+s2)+exp(s3%s4+s5+s6/7)
end

Can just be a piece of code

Must be able to ask function for any element the
TCl algorithm wants



Future Directions — Tensor Cross Interpolation

We already saw yesterday the demo of learning

40 Gaussians, random location, width, & height
+ a sharp step at 0.4

Ny

f(gj) — Z age_wg (z—x4)*

g=1
+ 0.4 - O(x)

v




Future Directions — Tensor Cross Interpolation

Next demo: 2D function and optima

50 2D Gaussians, random location, width, & height




Future Directions — Tensor Cross Interpolation
How were optima (global min and max) found?
Very interesting proposal called "TTOpt" [1]

Claim: TCl usually "encounters” global min and max

Alternatively can use MPS perfect sampling strategies [2]

0.0 0.2 0.4 0.6 0.8

[1] Sozykin, Chertkov, Schutski, Phan, Cichocki, Oseledets, TTOpt, NeurlPS (2022)
[2] Chertkov, Ryzhakov, Novikov, Oseledets, arxiv:2209.14808



Future Directions — Tensor Cross Interpolation

Fun paper using TTOpt to
control a real robot arm! *

Figure 1. Solutions from TTGO for motion planning of a
manipulator from a given initial configuration (white) to a final
configuration (dark). The obtained joint angle trajectories result
in different paths for the end.effector which are highlighted by
dotted curves in different colors. The multimodality is clearly
visible from these solutions.

TCI (= TT-Cross) algorithm
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Figure 12. Real robot implementation of one of the TTGO
solutions for the pick-and-place task. The motion from the initial
configuration to the final configuration (same as the initial
configuration in this case) via the picking configuration and
placing configuration is depicted.

* Shetty, Lembono, Loew, and Calinon, Tensor Train for Global Optimization Problems in Robotics



Future Directions — Tensor Cross Interpolation

For more details of Tensor Cross algorithm,
see following lecture and slides

= (» Premium '
Interpolative Form

Now reshape column matrix of previous step

Compute ID. Now e.g. only keep 2 of the 4 columns.

ID
4 ; Ss §4§ .: S5
51 *:1 ~ 51 @,1) 1

: [2] [(m [2]

< » Pl O 2401715308

Tensor network for machine learning applications 3

YouTube Link (https://youtu.be/PFijeMaRGUc)
Slides Link (https://itensor.org/miles/Trieste03TCl.pdf)



https://youtu.be/PFijeMaRGUc
https://itensor.org/miles/Trieste03TCI.pdf

Tensor Network Machine Learning
Many other works | did not have time to cover e.qg.

» Compressing neural network weights with
tensor networks

Novikov et al., Advances in Neural Information Processing (2015) (arxiv:1509.06569)
Garipov, Podoprikhin, Novikov, arxiv:1611.03214

e Tree networks of low-rank (CP rank) tensors

(a)

..4

Chen, Barthel, ls
arxiv:2305.19440 5
1
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Outlook and Future Directions



Outlook

We saw a framework for machine learning using tensor
networks

Goal of capturing power of tensor networks for physics
but for broader applications

Data




Outlook

Does it really deliver? It depends... (as of 2024)

For images / computer vision, promising but not yet
competitive:

*tensor networks have lots of parameters (relatively)
 gradient descent is therefore slow
 but linear algebra algorithms much faster than gradient

e tensor networks are just linear algebra in
high dimensions



Outlook

Does it really deliver? It depends... (as of 2024)

For low-to-medium dimensional functions,
very powerful

Ng
f(x) — Z age_wg (95_5'39)2
g=1

+ 0.4-0O(x)

\
10~ b-b-bbbbbbd

Two novel algorithms for TN machine learning

What promise might they hold?



