This is a question I probably should have asked a long time ago, but it didn't really occur to me until now.
For certain simple models, e.g. Ising spin models and J1-J2 models, there is a term (or multiple terms) in the Hamiltonian relating sites at the beginning and end of the chain. For example, the J1-J2 model on an N-site periodic chain has @@J1\vec{S}N\cdot\vec{S}1@@, @@J2\vec{S}{N-1}\cdot\vec{S}1@@, and @@J2\vec{S}N\cdot\vec{S}_2@@. However, when I add such terms in the Hamiltonian, no link is formed in the actual tensor network architecture, and the optimization works exactly as intended. Why is no such link needed when dealing with such terms in the Hamiltonian?
I'm kind of wondering the same thing for the terms that are just two sites apart, e.g. @@J2\vec{S}k\cdot\vec{S}_{k+2}@@, or for any distance for that matter. What's going on behind the scenes in how these terms are stored? For instance, is it true that the memory usage for a Hamiltonian term multiplying spins at two sites is larger the farther apart the two sites are?
When I use many such terms (e.g. putting a term between every pair of sites), then the code stops working and runs into memory errors, so I'm assuming that such terms do use more memory. But it seems to have no problem with a few terms of this form (as in the examples above with local interactions but periodic boundary conditions). Is this an accurate characterization?