consider a simple interaction Hamiltonian of spin-1 boson. Each boson has 3 spin states : @@mF=1,0,-1@@. We now use @@a{mF}@@ (@@a{mF}^{\dagger}@@) as the annihilation (creation) operator for different @@mF@@ states.
@@H=a1^{\dagger}a{-1}^{\dagger}a0a0+h.c.@@
Obviously, this Hamiltonian does not conserve @@a{mF}^{\dagger}a{mF}@@ separately, but instead it conserves total @@Sz=a1^{\dagger}a1-a{-1}^{\dagger}a_{-1}@@.
Now I have a problem. When I define a site set file for spin-1 Bose-Hubbard model, I need to define a IQIndex object with (Index, QN) pair. Can I use @@a{mF}^{\dagger}a{mF}@@ as a quantum number for QN objects ? That is, I may define them to be
Index(nameint("state name",n),1,Site),QN({Np1,1},{Nz0,1},{Nm1,1}));
where Np1=@@a{1}^{\dagger}a1@@, Nz0=@@=a0^{\dagger}a0@@ and Nm1=@@a{-1}^{\dagger}a{-1}@@.
Thank you.